
How do you evaluate the integral by changing to cylindrical coordinates?
$\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
Answer
554.1k+ views
Hint: The integral given in the above question is in the form of the rectangular coordinates $\left( x,y,z \right)$. As stated in the question, we have to change them to the cylindrical coordinates which are $\left( r,\theta ,z \right)$. For this, we have to use the relations $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$. The limits of the integration are also to be changed using these relations.
Complete step by step answer:
Let us write the integral given in the question as
$I=\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
The above question is directing us to change the rectangular coordinates $\left( x,y,z \right)$ to the cylindrical coordinates $\left( r,\theta ,z \right)$. The cylindrical coordinates are related to the cylindrical coordinates as
$x=r\cos \theta $, $y=r\sin \theta $ and $z=z$
From the order of the above integral, we can observe that the variable for the innermost integral is $z$, for the middle is $x$, and for the outermost is $y$. So the limits for these are noted from the above integral as
\[\begin{align}
& z\Rightarrow \left( \sqrt{{{x}^{2}}+{{y}^{2}}},2 \right) \\
& x\Rightarrow \left( -\sqrt{4-{{y}^{2}}},\sqrt{4-{{y}^{2}}} \right) \\
& z\Rightarrow \left( -2,2 \right) \\
\end{align}\]
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$ in the lower limit of $z$ we get
$\begin{align}
& \Rightarrow z=\sqrt{{{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow z=\sqrt{{{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta } \\
& \Rightarrow z=\sqrt{{{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)} \\
\end{align}$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. So we get
$\begin{align}
& \Rightarrow z=\sqrt{{{r}^{2}}\left( 1 \right)} \\
& \Rightarrow z=r \\
\end{align}$
So the lower limit of $z$ is equal to \[r\]. The upper limit of $z$ in the cylindrical coordinates will be the same, since the $z$ coordinate is same. So the upper limit of $z$ is equal to $2$.
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ in the upper limit for $x$ we get
\[\begin{align}
& \Rightarrow r\cos \theta =\sqrt{4-{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow r\cos \theta =\sqrt{4-{{r}^{2}}{{\sin }^{2}}\theta } \\
\end{align}\]
Squaring both the sides, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta =4-{{r}^{2}}{{\sin }^{2}}\theta \\
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =4 \\
& \Rightarrow {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)=4 \\
& \Rightarrow {{r}^{2}}=4 \\
\end{align}\]
On solving we get
$r=2$
Thus, the lower limit of $r$ is $0$ and the upper limit of $r$ is $2$.
Lastly, we know that the range for the cylindrical coordinate $\theta $ is $\left( 0,2\pi \right)$.
Hence, the given integral can now be written in the cylindrical coordinates as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{\left( r\cos \theta z \right)rdzdrd\theta }}} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{zdz\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }}} \\
\end{align}\]
Firstly, solving the innermost integral, we have
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{z}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{2}^{2}}-{{r}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2-\dfrac{{{r}^{2}}}{2} \right)\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2{{r}^{2}}-\dfrac{{{r}^{4}}}{2} \right)dr\left( \cos \theta \right)d\theta }} \\
\end{align}\]
Now, we solve the integration with respect to $r$ as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\left[ \dfrac{2{{r}^{3}}}{3}-\dfrac{{{r}^{5}}}{10} \right]_{0}^{2}\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{2{{\left( 2 \right)}^{3}}}{3}-\dfrac{{{\left( 2 \right)}^{5}}}{10}-0 \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{16}{3}-\dfrac{16}{5} \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\dfrac{32}{15}\int_{0}^{2\pi }{\left( \cos \theta \right)d\theta } \\
\end{align}\]
Now, we know that $\int{\cos \theta d\theta }=\sin \theta $. So we get
\[\begin{align}
& \Rightarrow I=\dfrac{32}{15}\left[ \sin \theta \right]_{0}^{2\pi } \\
& \Rightarrow I=\dfrac{32}{15}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow I=\dfrac{32}{15}\left( 0-0 \right) \\
& \Rightarrow I=0 \\
\end{align}\]
Hence, the given integral is equal to zero.
Note:
The differentials of the rectangular coordinates $dz dx dy$ in the above question are not simply replaced with the differentials of the cylindrical coordinates $dzdrdd\theta $. The cylindrical coordinate $r$ is also multiplied with them and they are written as $rdzdrdd\theta $ instead of $dzdrdd\theta $. Also, after solving the equation ${{r}^{2}}=4$, we will get the two values for $r$, which will be $2$ and $-2$. But since $r$ denotes the distance, so it cannot be negative and will begin from zero only. It is for this reason that we have taken the limits of $r$ from zero to $2$.
Complete step by step answer:
Let us write the integral given in the question as
$I=\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
The above question is directing us to change the rectangular coordinates $\left( x,y,z \right)$ to the cylindrical coordinates $\left( r,\theta ,z \right)$. The cylindrical coordinates are related to the cylindrical coordinates as
$x=r\cos \theta $, $y=r\sin \theta $ and $z=z$
From the order of the above integral, we can observe that the variable for the innermost integral is $z$, for the middle is $x$, and for the outermost is $y$. So the limits for these are noted from the above integral as
\[\begin{align}
& z\Rightarrow \left( \sqrt{{{x}^{2}}+{{y}^{2}}},2 \right) \\
& x\Rightarrow \left( -\sqrt{4-{{y}^{2}}},\sqrt{4-{{y}^{2}}} \right) \\
& z\Rightarrow \left( -2,2 \right) \\
\end{align}\]
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$ in the lower limit of $z$ we get
$\begin{align}
& \Rightarrow z=\sqrt{{{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow z=\sqrt{{{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta } \\
& \Rightarrow z=\sqrt{{{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)} \\
\end{align}$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. So we get
$\begin{align}
& \Rightarrow z=\sqrt{{{r}^{2}}\left( 1 \right)} \\
& \Rightarrow z=r \\
\end{align}$
So the lower limit of $z$ is equal to \[r\]. The upper limit of $z$ in the cylindrical coordinates will be the same, since the $z$ coordinate is same. So the upper limit of $z$ is equal to $2$.
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ in the upper limit for $x$ we get
\[\begin{align}
& \Rightarrow r\cos \theta =\sqrt{4-{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow r\cos \theta =\sqrt{4-{{r}^{2}}{{\sin }^{2}}\theta } \\
\end{align}\]
Squaring both the sides, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta =4-{{r}^{2}}{{\sin }^{2}}\theta \\
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =4 \\
& \Rightarrow {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)=4 \\
& \Rightarrow {{r}^{2}}=4 \\
\end{align}\]
On solving we get
$r=2$
Thus, the lower limit of $r$ is $0$ and the upper limit of $r$ is $2$.
Lastly, we know that the range for the cylindrical coordinate $\theta $ is $\left( 0,2\pi \right)$.
Hence, the given integral can now be written in the cylindrical coordinates as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{\left( r\cos \theta z \right)rdzdrd\theta }}} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{zdz\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }}} \\
\end{align}\]
Firstly, solving the innermost integral, we have
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{z}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{2}^{2}}-{{r}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2-\dfrac{{{r}^{2}}}{2} \right)\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2{{r}^{2}}-\dfrac{{{r}^{4}}}{2} \right)dr\left( \cos \theta \right)d\theta }} \\
\end{align}\]
Now, we solve the integration with respect to $r$ as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\left[ \dfrac{2{{r}^{3}}}{3}-\dfrac{{{r}^{5}}}{10} \right]_{0}^{2}\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{2{{\left( 2 \right)}^{3}}}{3}-\dfrac{{{\left( 2 \right)}^{5}}}{10}-0 \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{16}{3}-\dfrac{16}{5} \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\dfrac{32}{15}\int_{0}^{2\pi }{\left( \cos \theta \right)d\theta } \\
\end{align}\]
Now, we know that $\int{\cos \theta d\theta }=\sin \theta $. So we get
\[\begin{align}
& \Rightarrow I=\dfrac{32}{15}\left[ \sin \theta \right]_{0}^{2\pi } \\
& \Rightarrow I=\dfrac{32}{15}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow I=\dfrac{32}{15}\left( 0-0 \right) \\
& \Rightarrow I=0 \\
\end{align}\]
Hence, the given integral is equal to zero.
Note:
The differentials of the rectangular coordinates $dz dx dy$ in the above question are not simply replaced with the differentials of the cylindrical coordinates $dzdrdd\theta $. The cylindrical coordinate $r$ is also multiplied with them and they are written as $rdzdrdd\theta $ instead of $dzdrdd\theta $. Also, after solving the equation ${{r}^{2}}=4$, we will get the two values for $r$, which will be $2$ and $-2$. But since $r$ denotes the distance, so it cannot be negative and will begin from zero only. It is for this reason that we have taken the limits of $r$ from zero to $2$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

