How do you evaluate the integral by changing to cylindrical coordinates?
$\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
Answer
Verified
440.1k+ views
Hint: The integral given in the above question is in the form of the rectangular coordinates $\left( x,y,z \right)$. As stated in the question, we have to change them to the cylindrical coordinates which are $\left( r,\theta ,z \right)$. For this, we have to use the relations $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$. The limits of the integration are also to be changed using these relations.
Complete step by step answer:
Let us write the integral given in the question as
$I=\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
The above question is directing us to change the rectangular coordinates $\left( x,y,z \right)$ to the cylindrical coordinates $\left( r,\theta ,z \right)$. The cylindrical coordinates are related to the cylindrical coordinates as
$x=r\cos \theta $, $y=r\sin \theta $ and $z=z$
From the order of the above integral, we can observe that the variable for the innermost integral is $z$, for the middle is $x$, and for the outermost is $y$. So the limits for these are noted from the above integral as
\[\begin{align}
& z\Rightarrow \left( \sqrt{{{x}^{2}}+{{y}^{2}}},2 \right) \\
& x\Rightarrow \left( -\sqrt{4-{{y}^{2}}},\sqrt{4-{{y}^{2}}} \right) \\
& z\Rightarrow \left( -2,2 \right) \\
\end{align}\]
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$ in the lower limit of $z$ we get
$\begin{align}
& \Rightarrow z=\sqrt{{{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow z=\sqrt{{{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta } \\
& \Rightarrow z=\sqrt{{{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)} \\
\end{align}$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. So we get
$\begin{align}
& \Rightarrow z=\sqrt{{{r}^{2}}\left( 1 \right)} \\
& \Rightarrow z=r \\
\end{align}$
So the lower limit of $z$ is equal to \[r\]. The upper limit of $z$ in the cylindrical coordinates will be the same, since the $z$ coordinate is same. So the upper limit of $z$ is equal to $2$.
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ in the upper limit for $x$ we get
\[\begin{align}
& \Rightarrow r\cos \theta =\sqrt{4-{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow r\cos \theta =\sqrt{4-{{r}^{2}}{{\sin }^{2}}\theta } \\
\end{align}\]
Squaring both the sides, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta =4-{{r}^{2}}{{\sin }^{2}}\theta \\
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =4 \\
& \Rightarrow {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)=4 \\
& \Rightarrow {{r}^{2}}=4 \\
\end{align}\]
On solving we get
$r=2$
Thus, the lower limit of $r$ is $0$ and the upper limit of $r$ is $2$.
Lastly, we know that the range for the cylindrical coordinate $\theta $ is $\left( 0,2\pi \right)$.
Hence, the given integral can now be written in the cylindrical coordinates as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{\left( r\cos \theta z \right)rdzdrd\theta }}} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{zdz\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }}} \\
\end{align}\]
Firstly, solving the innermost integral, we have
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{z}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{2}^{2}}-{{r}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2-\dfrac{{{r}^{2}}}{2} \right)\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2{{r}^{2}}-\dfrac{{{r}^{4}}}{2} \right)dr\left( \cos \theta \right)d\theta }} \\
\end{align}\]
Now, we solve the integration with respect to $r$ as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\left[ \dfrac{2{{r}^{3}}}{3}-\dfrac{{{r}^{5}}}{10} \right]_{0}^{2}\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{2{{\left( 2 \right)}^{3}}}{3}-\dfrac{{{\left( 2 \right)}^{5}}}{10}-0 \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{16}{3}-\dfrac{16}{5} \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\dfrac{32}{15}\int_{0}^{2\pi }{\left( \cos \theta \right)d\theta } \\
\end{align}\]
Now, we know that $\int{\cos \theta d\theta }=\sin \theta $. So we get
\[\begin{align}
& \Rightarrow I=\dfrac{32}{15}\left[ \sin \theta \right]_{0}^{2\pi } \\
& \Rightarrow I=\dfrac{32}{15}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow I=\dfrac{32}{15}\left( 0-0 \right) \\
& \Rightarrow I=0 \\
\end{align}\]
Hence, the given integral is equal to zero.
Note:
The differentials of the rectangular coordinates $dz dx dy$ in the above question are not simply replaced with the differentials of the cylindrical coordinates $dzdrdd\theta $. The cylindrical coordinate $r$ is also multiplied with them and they are written as $rdzdrdd\theta $ instead of $dzdrdd\theta $. Also, after solving the equation ${{r}^{2}}=4$, we will get the two values for $r$, which will be $2$ and $-2$. But since $r$ denotes the distance, so it cannot be negative and will begin from zero only. It is for this reason that we have taken the limits of $r$ from zero to $2$.
Complete step by step answer:
Let us write the integral given in the question as
$I=\int_{-2}^{2}{\int_{-\sqrt{4-{{y}^{2}}}}^{\sqrt{4-{{y}^{2}}}}{\int_{\sqrt{{{x}^{2}}+{{y}^{2}}}}^{2}{\left( xz \right)dzdxdy}}}$
The above question is directing us to change the rectangular coordinates $\left( x,y,z \right)$ to the cylindrical coordinates $\left( r,\theta ,z \right)$. The cylindrical coordinates are related to the cylindrical coordinates as
$x=r\cos \theta $, $y=r\sin \theta $ and $z=z$
From the order of the above integral, we can observe that the variable for the innermost integral is $z$, for the middle is $x$, and for the outermost is $y$. So the limits for these are noted from the above integral as
\[\begin{align}
& z\Rightarrow \left( \sqrt{{{x}^{2}}+{{y}^{2}}},2 \right) \\
& x\Rightarrow \left( -\sqrt{4-{{y}^{2}}},\sqrt{4-{{y}^{2}}} \right) \\
& z\Rightarrow \left( -2,2 \right) \\
\end{align}\]
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ and $z=z$ in the lower limit of $z$ we get
$\begin{align}
& \Rightarrow z=\sqrt{{{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow z=\sqrt{{{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta } \\
& \Rightarrow z=\sqrt{{{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)} \\
\end{align}$
We know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$. So we get
$\begin{align}
& \Rightarrow z=\sqrt{{{r}^{2}}\left( 1 \right)} \\
& \Rightarrow z=r \\
\end{align}$
So the lower limit of $z$ is equal to \[r\]. The upper limit of $z$ in the cylindrical coordinates will be the same, since the $z$ coordinate is same. So the upper limit of $z$ is equal to $2$.
Now, substituting $x=r\cos \theta $, $y=r\sin \theta $ in the upper limit for $x$ we get
\[\begin{align}
& \Rightarrow r\cos \theta =\sqrt{4-{{\left( r\sin \theta \right)}^{2}}} \\
& \Rightarrow r\cos \theta =\sqrt{4-{{r}^{2}}{{\sin }^{2}}\theta } \\
\end{align}\]
Squaring both the sides, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta =4-{{r}^{2}}{{\sin }^{2}}\theta \\
& \Rightarrow {{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =4 \\
& \Rightarrow {{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)=4 \\
& \Rightarrow {{r}^{2}}=4 \\
\end{align}\]
On solving we get
$r=2$
Thus, the lower limit of $r$ is $0$ and the upper limit of $r$ is $2$.
Lastly, we know that the range for the cylindrical coordinate $\theta $ is $\left( 0,2\pi \right)$.
Hence, the given integral can now be written in the cylindrical coordinates as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{\left( r\cos \theta z \right)rdzdrd\theta }}} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\int_{r}^{2}{zdz\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }}} \\
\end{align}\]
Firstly, solving the innermost integral, we have
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{z}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left[ \dfrac{{{2}^{2}}-{{r}^{2}}}{2} \right]_{r}^{2}\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2-\dfrac{{{r}^{2}}}{2} \right)\left( {{r}^{2}} \right)dr\left( \cos \theta \right)d\theta }} \\
& \Rightarrow I=\int_{0}^{2\pi }{\int_{0}^{2}{\left( 2{{r}^{2}}-\dfrac{{{r}^{4}}}{2} \right)dr\left( \cos \theta \right)d\theta }} \\
\end{align}\]
Now, we solve the integration with respect to $r$ as
\[\begin{align}
& \Rightarrow I=\int_{0}^{2\pi }{\left[ \dfrac{2{{r}^{3}}}{3}-\dfrac{{{r}^{5}}}{10} \right]_{0}^{2}\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{2{{\left( 2 \right)}^{3}}}{3}-\dfrac{{{\left( 2 \right)}^{5}}}{10}-0 \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\int_{0}^{2\pi }{\left( \dfrac{16}{3}-\dfrac{16}{5} \right)\left( \cos \theta \right)d\theta } \\
& \Rightarrow I=\dfrac{32}{15}\int_{0}^{2\pi }{\left( \cos \theta \right)d\theta } \\
\end{align}\]
Now, we know that $\int{\cos \theta d\theta }=\sin \theta $. So we get
\[\begin{align}
& \Rightarrow I=\dfrac{32}{15}\left[ \sin \theta \right]_{0}^{2\pi } \\
& \Rightarrow I=\dfrac{32}{15}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow I=\dfrac{32}{15}\left( 0-0 \right) \\
& \Rightarrow I=0 \\
\end{align}\]
Hence, the given integral is equal to zero.
Note:
The differentials of the rectangular coordinates $dz dx dy$ in the above question are not simply replaced with the differentials of the cylindrical coordinates $dzdrdd\theta $. The cylindrical coordinate $r$ is also multiplied with them and they are written as $rdzdrdd\theta $ instead of $dzdrdd\theta $. Also, after solving the equation ${{r}^{2}}=4$, we will get the two values for $r$, which will be $2$ and $-2$. But since $r$ denotes the distance, so it cannot be negative and will begin from zero only. It is for this reason that we have taken the limits of $r$ from zero to $2$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE