Evaluate the given expression $\sum\limits_{k = 1}^n {\left( {{2^k} + {3^{k - 1}}} \right)} $
Answer
Verified
506.4k+ views
Hint: Simplify the required expression by breaking the submission down into two different terms (as they can be simplified around the positive sign) then , expand by writing different values of k starting from 1, to obtain a progression series.
Complete step-by-step answer:
Now we need to find the value of $\sum\limits_{k = 1}^n {\left( {{2^k} + {3^{k - 1}}} \right)} $
So we can simplify it to
$ \Rightarrow \sum\limits_{k = 1}^n {{2^k}} + \sum\limits_{k = 1}^n {{3^{k - 1}}} $
Now let’s expand each of these submissions by putting various values of k starting from 1 and going till n.
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$ (EQ 1)
Now, let’s talk about the first expression which is
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right)$
Now, the first term of this series as ${a_1} = {2^1} = 2$ and second term ${a_2} = {2^2} = 4$
If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{4}{2} = 2$ (EQ 2)
Now, the third term of this series is${a_3} = {2^3} = 8$.
If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{{16}}{8} = 2$ (EQ 3)
Now, clearly equation (EQ 2) is equal to equation (EQ 3) so we can say that ${r_1} = {r_2} = 2$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.
Now, this series is forming a sum of n terms where the common ratio is greater than 1.
So ${S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}{\text{ if r > 1}}$ (EQ 4)
Putting the values in equation (4) we get
${S_n} = \dfrac{{2\left( {{2^n} - 1} \right)}}{{2 - 1}} = \dfrac{{2\left( {{2^n} - 1} \right)}}{1} = 2 \times {2^n} - 2 = {2^{n + 1}} - 2$ (EQ 5)
Now, similarly talking about the second series
$\left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$
Now, the first term of this series as${a_1} = {3^0} = 1$ and second term ${a_2} = {3^1} = 3$
If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{3}{1} = 3$ (EQ 6)
Now, the third term of this series is${a_3} = {3^2} = 9$.
If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{9}{3} = 3$ (EQ 7)
Now, clearly equation (6) is equal to equation (7) so we can say that${r_1} = {r_2} = 3$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.
Putting the values in equation (EQ 4) we get
${S_n} = \dfrac{{{3^0}\left( {{3^n} - 1} \right)}}{{3 - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$ (EQ 8)
Thus equation (1) is equal to equation (5) + equation (8)
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$
$ \Rightarrow {2^{n + 1}} - 2 + \dfrac{{\left( {{3^n} - 1} \right)}}{2}$
$
\Rightarrow {2^{n + 1}} - 2 + \dfrac{{{3^n}}}{2} - \dfrac{1}{2} \\
\Rightarrow {2^{n + 1}} + \dfrac{{{3^n}}}{2} - \dfrac{5}{2} \\
$
Note: Whenever we come across such types of problems the key concept that we need to recall is that a series is in GP if and only if the common ratio is coming out to be constant, moreover direct expansion of submissions always helps in making a series whose sum can be found using respective series formula.
Complete step-by-step answer:
Now we need to find the value of $\sum\limits_{k = 1}^n {\left( {{2^k} + {3^{k - 1}}} \right)} $
So we can simplify it to
$ \Rightarrow \sum\limits_{k = 1}^n {{2^k}} + \sum\limits_{k = 1}^n {{3^{k - 1}}} $
Now let’s expand each of these submissions by putting various values of k starting from 1 and going till n.
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$ (EQ 1)
Now, let’s talk about the first expression which is
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right)$
Now, the first term of this series as ${a_1} = {2^1} = 2$ and second term ${a_2} = {2^2} = 4$
If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{4}{2} = 2$ (EQ 2)
Now, the third term of this series is${a_3} = {2^3} = 8$.
If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{{16}}{8} = 2$ (EQ 3)
Now, clearly equation (EQ 2) is equal to equation (EQ 3) so we can say that ${r_1} = {r_2} = 2$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.
Now, this series is forming a sum of n terms where the common ratio is greater than 1.
So ${S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}{\text{ if r > 1}}$ (EQ 4)
Putting the values in equation (4) we get
${S_n} = \dfrac{{2\left( {{2^n} - 1} \right)}}{{2 - 1}} = \dfrac{{2\left( {{2^n} - 1} \right)}}{1} = 2 \times {2^n} - 2 = {2^{n + 1}} - 2$ (EQ 5)
Now, similarly talking about the second series
$\left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$
Now, the first term of this series as${a_1} = {3^0} = 1$ and second term ${a_2} = {3^1} = 3$
If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{3}{1} = 3$ (EQ 6)
Now, the third term of this series is${a_3} = {3^2} = 9$.
If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{9}{3} = 3$ (EQ 7)
Now, clearly equation (6) is equal to equation (7) so we can say that${r_1} = {r_2} = 3$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.
Putting the values in equation (EQ 4) we get
${S_n} = \dfrac{{{3^0}\left( {{3^n} - 1} \right)}}{{3 - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$ (EQ 8)
Thus equation (1) is equal to equation (5) + equation (8)
$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$
$ \Rightarrow {2^{n + 1}} - 2 + \dfrac{{\left( {{3^n} - 1} \right)}}{2}$
$
\Rightarrow {2^{n + 1}} - 2 + \dfrac{{{3^n}}}{2} - \dfrac{1}{2} \\
\Rightarrow {2^{n + 1}} + \dfrac{{{3^n}}}{2} - \dfrac{5}{2} \\
$
Note: Whenever we come across such types of problems the key concept that we need to recall is that a series is in GP if and only if the common ratio is coming out to be constant, moreover direct expansion of submissions always helps in making a series whose sum can be found using respective series formula.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE