Answer

Verified

433.8k+ views

Hint: Simplify the required expression by breaking the submission down into two different terms (as they can be simplified around the positive sign) then , expand by writing different values of k starting from 1, to obtain a progression series.

Complete step-by-step answer:

Now we need to find the value of $\sum\limits_{k = 1}^n {\left( {{2^k} + {3^{k - 1}}} \right)} $

So we can simplify it to

$ \Rightarrow \sum\limits_{k = 1}^n {{2^k}} + \sum\limits_{k = 1}^n {{3^{k - 1}}} $

Now let’s expand each of these submissions by putting various values of k starting from 1 and going till n.

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$ (EQ 1)

Now, let’s talk about the first expression which is

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right)$

Now, the first term of this series as ${a_1} = {2^1} = 2$ and second term ${a_2} = {2^2} = 4$

If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{4}{2} = 2$ (EQ 2)

Now, the third term of this series is${a_3} = {2^3} = 8$.

If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{{16}}{8} = 2$ (EQ 3)

Now, clearly equation (EQ 2) is equal to equation (EQ 3) so we can say that ${r_1} = {r_2} = 2$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.

Now, this series is forming a sum of n terms where the common ratio is greater than 1.

So ${S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}{\text{ if r > 1}}$ (EQ 4)

Putting the values in equation (4) we get

${S_n} = \dfrac{{2\left( {{2^n} - 1} \right)}}{{2 - 1}} = \dfrac{{2\left( {{2^n} - 1} \right)}}{1} = 2 \times {2^n} - 2 = {2^{n + 1}} - 2$ (EQ 5)

Now, similarly talking about the second series

$\left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$

Now, the first term of this series as${a_1} = {3^0} = 1$ and second term ${a_2} = {3^1} = 3$

If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{3}{1} = 3$ (EQ 6)

Now, the third term of this series is${a_3} = {3^2} = 9$.

If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{9}{3} = 3$ (EQ 7)

Now, clearly equation (6) is equal to equation (7) so we can say that${r_1} = {r_2} = 3$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.

Putting the values in equation (EQ 4) we get

${S_n} = \dfrac{{{3^0}\left( {{3^n} - 1} \right)}}{{3 - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$ (EQ 8)

Thus equation (1) is equal to equation (5) + equation (8)

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$

$ \Rightarrow {2^{n + 1}} - 2 + \dfrac{{\left( {{3^n} - 1} \right)}}{2}$

$

\Rightarrow {2^{n + 1}} - 2 + \dfrac{{{3^n}}}{2} - \dfrac{1}{2} \\

\Rightarrow {2^{n + 1}} + \dfrac{{{3^n}}}{2} - \dfrac{5}{2} \\

$

Note: Whenever we come across such types of problems the key concept that we need to recall is that a series is in GP if and only if the common ratio is coming out to be constant, moreover direct expansion of submissions always helps in making a series whose sum can be found using respective series formula.

Complete step-by-step answer:

Now we need to find the value of $\sum\limits_{k = 1}^n {\left( {{2^k} + {3^{k - 1}}} \right)} $

So we can simplify it to

$ \Rightarrow \sum\limits_{k = 1}^n {{2^k}} + \sum\limits_{k = 1}^n {{3^{k - 1}}} $

Now let’s expand each of these submissions by putting various values of k starting from 1 and going till n.

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$ (EQ 1)

Now, let’s talk about the first expression which is

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right)$

Now, the first term of this series as ${a_1} = {2^1} = 2$ and second term ${a_2} = {2^2} = 4$

If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{4}{2} = 2$ (EQ 2)

Now, the third term of this series is${a_3} = {2^3} = 8$.

If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{{16}}{8} = 2$ (EQ 3)

Now, clearly equation (EQ 2) is equal to equation (EQ 3) so we can say that ${r_1} = {r_2} = 2$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.

Now, this series is forming a sum of n terms where the common ratio is greater than 1.

So ${S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}{\text{ if r > 1}}$ (EQ 4)

Putting the values in equation (4) we get

${S_n} = \dfrac{{2\left( {{2^n} - 1} \right)}}{{2 - 1}} = \dfrac{{2\left( {{2^n} - 1} \right)}}{1} = 2 \times {2^n} - 2 = {2^{n + 1}} - 2$ (EQ 5)

Now, similarly talking about the second series

$\left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$

Now, the first term of this series as${a_1} = {3^0} = 1$ and second term ${a_2} = {3^1} = 3$

If we divide the second term by first term then we get common ratio ${r_1} = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{3}{1} = 3$ (EQ 6)

Now, the third term of this series is${a_3} = {3^2} = 9$.

If we divide the fourth term with third term then we get a common ratio ${r_2} = \dfrac{{{a_3}}}{{{a_2}}} = \dfrac{9}{3} = 3$ (EQ 7)

Now, clearly equation (6) is equal to equation (7) so we can say that${r_1} = {r_2} = 3$, hence the given series is in GP, because a series is in GP if and only if the common ratio remains constant throughout.

Putting the values in equation (EQ 4) we get

${S_n} = \dfrac{{{3^0}\left( {{3^n} - 1} \right)}}{{3 - 1}} = \dfrac{{\left( {{3^n} - 1} \right)}}{2}$ (EQ 8)

Thus equation (1) is equal to equation (5) + equation (8)

$ \Rightarrow \left( {{2^1} + {2^2} + {2^3} + {2^4}............ + {2^n}} \right) + \left( {{3^0} + {3^1} + {3^2} + {3^3}............ + {3^{n - 1}}} \right)$

$ \Rightarrow {2^{n + 1}} - 2 + \dfrac{{\left( {{3^n} - 1} \right)}}{2}$

$

\Rightarrow {2^{n + 1}} - 2 + \dfrac{{{3^n}}}{2} - \dfrac{1}{2} \\

\Rightarrow {2^{n + 1}} + \dfrac{{{3^n}}}{2} - \dfrac{5}{2} \\

$

Note: Whenever we come across such types of problems the key concept that we need to recall is that a series is in GP if and only if the common ratio is coming out to be constant, moreover direct expansion of submissions always helps in making a series whose sum can be found using respective series formula.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Trending doubts

What type of defect is shown by NaCl in a Stoichiometric class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Distinguish between tetrahedral voids and octahedral class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE