Answer
Verified
435.9k+ views
Hint: We here have been given the integral $\int{\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$ that we need to evaluate. For this, we will first see if there is any relationship between the numerator and the denominator by differentiating the denominator of a part of it. Then we will see that we can convert this into the product of two functions such that we can calculate the integral of one of those functions. Then we will use integration by parts which is given as:
$\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)}\left[ \int{g\left( x \right)dx} \right]-\int{\left( \int{g\left( x \right)dx} \right)\left( \dfrac{d}{dx}\left( f\left( x \right) \right) \right)dx}$
Here, we will give g(x) the value of the function whose integral we can calculate and f(x) to the other function. Hence, using integration by parts, we will get the value of the required integral.
Complete step by step answer:
Here, we have been asked to evaluate the limit $\int{\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$. For this, we will first see if the numerator is the differential of the denominator.
The denominator is: ${{\left( x\sin x+\cos x \right)}^{2}}$
We will check for it without any power. Thus, we get:
$x\sin x+\cos x$
Now, differentiating and applying the product rule, we get:
$\begin{align}
& \dfrac{d}{dx}\left( x\sin +\cos x \right) \\
& \Rightarrow x\cos x+1.\sin x-\sin x \\
& \Rightarrow x\cos x \\
\end{align}$
Hence, if we divide the numerator by x and multiply it by cosx, it will become the differential of the denominator.
Thus, multiplying and dividing the numerator by x and cosx we get:
\[\begin{align}
& \int{\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{{{x}^{2}}\times \dfrac{x}{x}\times \dfrac{\cos x}{\cos x}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{x}{\cos x}.\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
\end{align}\]
Now, we can see that there are two functions $f\left( x \right)=\dfrac{x}{\cos x}$ and $g\left( x \right)=\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}$ in this integral. Thus, we can use integration by parts to solve this question.
Now, we know that the integration by parts is done as: $\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)}\left[ \int{g\left( x \right)dx} \right]-\int{\left( \int{g\left( x \right)dx} \right)\left( \dfrac{d}{dx}\left( f\left( x \right) \right) \right)dx}$
Hence, if we assume the given integral to be ‘I’, we get the required value of I as:
$\begin{align}
& I=\int{\dfrac{x}{\cos x}.\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow I=\dfrac{x}{\cos x}\left[ \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right]-\int{\left( \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
\end{align}$
Now, here we have to first calculate the value of $\int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$.
For this, let us assume xsinx+cosx=t.
Thus, differentiating both sides we get:
$\begin{align}
& x\sin x+\cos x=t \\
& \Rightarrow \left( x\cos x+\sin x-\sin x \right)dx=dt \\
& \Rightarrow x\cos xdx=dt \\
\end{align}$
Thus, putting the values of t and dt in the integral, we get:
$\begin{align}
& \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{dt}{{{\left( t \right)}^{2}}}} \\
& \Rightarrow \int{\dfrac{dt}{{{t}^{2}}}} \\
\end{align}$
Thus, integrating it we get:
$\begin{align}
& \int{\dfrac{dt}{{{t}^{2}}}} \\
& \Rightarrow \int{{{t}^{-2}}dt} \\
& \Rightarrow \dfrac{{{t}^{-2+1}}}{-2+1} \\
& \Rightarrow \dfrac{{{t}^{-1}}}{-1} \\
& \Rightarrow -\dfrac{1}{t} \\
\end{align}$
Now, putting the value of t back in the integral, we get:
$\begin{align}
& -\dfrac{1}{t} \\
& \Rightarrow -\dfrac{1}{x\sin x+\cos x} \\
\end{align}$
Thus, the value of $\int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$ is $-\dfrac{1}{x\sin x+\cos x}$
Now, putting this in the value of I, we get:
$\begin{align}
& I=\dfrac{x}{\cos x}\left[ \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right]-\int{\left( \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=\dfrac{x}{\cos x}\left( -\dfrac{1}{x\sin x+\cos x} \right)-\int{\left( -\dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=-\left( \dfrac{x}{\cos x(x\sin x+\cos x)} \right)+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
\end{align}$
Now, for the next step, we need to find the value of the differential of $\dfrac{x}{\cos x}$. Thus, differentiating it using quotient rule we get:
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \\
& \Rightarrow \dfrac{\cos x\left( \dfrac{d}{dx}\left( x \right) \right)-x\left( \dfrac{d}{dx}\left( \cos x \right) \right)}{{{\left( \cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{\cos x.1-x\left( -\sin x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow \dfrac{\cos x+x\sin x}{{{\cos }^{2}}x} \\
\end{align}$
Now, keeping this value in I, we get:
$\begin{align}
& I=-\left( \dfrac{x}{\cos x(x\sin x+\cos x)} \right)+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{\cos x+x\sin x}{{{\cos }^{2}}x} \right)dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{\dfrac{1}{{{\cos }^{2}}x}dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{{{\sec }^{2}}xdx} \\
\end{align}$
Now, we know that $\int{{{\sec }^{2}}xdx=\tan x}$
Thus, we get the value of I as:
$\begin{align}
& I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{{{\sec }^{2}}xdx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\tan x+C \\
\end{align}$
Here, C is the constant of integration.
Now, simplifying I we get:
$\begin{align}
& I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\tan x+C \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\dfrac{\sin x}{\cos x}+C \\
& \Rightarrow I=\dfrac{-x+x{{\sin }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{x\left( {{\sin }^{2}}x-1 \right)+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{-x{{\cos }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
\end{align}$
Now, taking cosx common we get:
$\begin{align}
& I=\dfrac{-x{{\cos }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{\cos x\left( \sin x-x\cos x \right)}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{\sin x-x\cos x}{x\sin x+\cos x}+C \\
\end{align}$
Thus, the value of the given integral is $\dfrac{\sin x-x\cos x}{x\sin x+\cos x}+C$.
Note: We here can see that we have only added the constant of integration in the final answer even though we did multiple integrations in itself. This is because multiple integrations will lead to multiple constants of integration and it will create confusion even though at the end all constants combine to form one single constant. Hence, to avoid all this we only add a constant at the last.
$\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)}\left[ \int{g\left( x \right)dx} \right]-\int{\left( \int{g\left( x \right)dx} \right)\left( \dfrac{d}{dx}\left( f\left( x \right) \right) \right)dx}$
Here, we will give g(x) the value of the function whose integral we can calculate and f(x) to the other function. Hence, using integration by parts, we will get the value of the required integral.
Complete step by step answer:
Here, we have been asked to evaluate the limit $\int{\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$. For this, we will first see if the numerator is the differential of the denominator.
The denominator is: ${{\left( x\sin x+\cos x \right)}^{2}}$
We will check for it without any power. Thus, we get:
$x\sin x+\cos x$
Now, differentiating and applying the product rule, we get:
$\begin{align}
& \dfrac{d}{dx}\left( x\sin +\cos x \right) \\
& \Rightarrow x\cos x+1.\sin x-\sin x \\
& \Rightarrow x\cos x \\
\end{align}$
Hence, if we divide the numerator by x and multiply it by cosx, it will become the differential of the denominator.
Thus, multiplying and dividing the numerator by x and cosx we get:
\[\begin{align}
& \int{\dfrac{{{x}^{2}}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{{{x}^{2}}\times \dfrac{x}{x}\times \dfrac{\cos x}{\cos x}}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{x}{\cos x}.\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
\end{align}\]
Now, we can see that there are two functions $f\left( x \right)=\dfrac{x}{\cos x}$ and $g\left( x \right)=\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}$ in this integral. Thus, we can use integration by parts to solve this question.
Now, we know that the integration by parts is done as: $\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)}\left[ \int{g\left( x \right)dx} \right]-\int{\left( \int{g\left( x \right)dx} \right)\left( \dfrac{d}{dx}\left( f\left( x \right) \right) \right)dx}$
Hence, if we assume the given integral to be ‘I’, we get the required value of I as:
$\begin{align}
& I=\int{\dfrac{x}{\cos x}.\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow I=\dfrac{x}{\cos x}\left[ \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right]-\int{\left( \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
\end{align}$
Now, here we have to first calculate the value of $\int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$.
For this, let us assume xsinx+cosx=t.
Thus, differentiating both sides we get:
$\begin{align}
& x\sin x+\cos x=t \\
& \Rightarrow \left( x\cos x+\sin x-\sin x \right)dx=dt \\
& \Rightarrow x\cos xdx=dt \\
\end{align}$
Thus, putting the values of t and dt in the integral, we get:
$\begin{align}
& \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \\
& \Rightarrow \int{\dfrac{dt}{{{\left( t \right)}^{2}}}} \\
& \Rightarrow \int{\dfrac{dt}{{{t}^{2}}}} \\
\end{align}$
Thus, integrating it we get:
$\begin{align}
& \int{\dfrac{dt}{{{t}^{2}}}} \\
& \Rightarrow \int{{{t}^{-2}}dt} \\
& \Rightarrow \dfrac{{{t}^{-2+1}}}{-2+1} \\
& \Rightarrow \dfrac{{{t}^{-1}}}{-1} \\
& \Rightarrow -\dfrac{1}{t} \\
\end{align}$
Now, putting the value of t back in the integral, we get:
$\begin{align}
& -\dfrac{1}{t} \\
& \Rightarrow -\dfrac{1}{x\sin x+\cos x} \\
\end{align}$
Thus, the value of $\int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx}$ is $-\dfrac{1}{x\sin x+\cos x}$
Now, putting this in the value of I, we get:
$\begin{align}
& I=\dfrac{x}{\cos x}\left[ \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right]-\int{\left( \int{\dfrac{x\cos x}{{{\left( x\sin x+\cos x \right)}^{2}}}dx} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=\dfrac{x}{\cos x}\left( -\dfrac{1}{x\sin x+\cos x} \right)-\int{\left( -\dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=-\left( \dfrac{x}{\cos x(x\sin x+\cos x)} \right)+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
\end{align}$
Now, for the next step, we need to find the value of the differential of $\dfrac{x}{\cos x}$. Thus, differentiating it using quotient rule we get:
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \\
& \Rightarrow \dfrac{\cos x\left( \dfrac{d}{dx}\left( x \right) \right)-x\left( \dfrac{d}{dx}\left( \cos x \right) \right)}{{{\left( \cos x \right)}^{2}}} \\
& \Rightarrow \dfrac{\cos x.1-x\left( -\sin x \right)}{{{\cos }^{2}}x} \\
& \Rightarrow \dfrac{\cos x+x\sin x}{{{\cos }^{2}}x} \\
\end{align}$
Now, keeping this value in I, we get:
$\begin{align}
& I=-\left( \dfrac{x}{\cos x(x\sin x+\cos x)} \right)+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{d}{dx}\left( \dfrac{x}{\cos x} \right) \right)dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{\left( \dfrac{1}{x\sin x+\cos x} \right)\left( \dfrac{\cos x+x\sin x}{{{\cos }^{2}}x} \right)dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{\dfrac{1}{{{\cos }^{2}}x}dx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{{{\sec }^{2}}xdx} \\
\end{align}$
Now, we know that $\int{{{\sec }^{2}}xdx=\tan x}$
Thus, we get the value of I as:
$\begin{align}
& I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\int{{{\sec }^{2}}xdx} \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\tan x+C \\
\end{align}$
Here, C is the constant of integration.
Now, simplifying I we get:
$\begin{align}
& I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\tan x+C \\
& \Rightarrow I=-\dfrac{x}{\cos x\left( x\sin x+\cos x \right)}+\dfrac{\sin x}{\cos x}+C \\
& \Rightarrow I=\dfrac{-x+x{{\sin }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{x\left( {{\sin }^{2}}x-1 \right)+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{-x{{\cos }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
\end{align}$
Now, taking cosx common we get:
$\begin{align}
& I=\dfrac{-x{{\cos }^{2}}x+\sin x\cos x}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{\cos x\left( \sin x-x\cos x \right)}{\cos x\left( x\sin x+\cos x \right)}+C \\
& \Rightarrow I=\dfrac{\sin x-x\cos x}{x\sin x+\cos x}+C \\
\end{align}$
Thus, the value of the given integral is $\dfrac{\sin x-x\cos x}{x\sin x+\cos x}+C$.
Note: We here can see that we have only added the constant of integration in the final answer even though we did multiple integrations in itself. This is because multiple integrations will lead to multiple constants of integration and it will create confusion even though at the end all constants combine to form one single constant. Hence, to avoid all this we only add a constant at the last.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE