Answer

Verified

393.6k+ views

**Hint:**To solve this integral, we will rewrite the numerator in such a manner that we can simplify the integrand. We will also use the method of substitution for the purpose of simplification. We will need the following integration formulae of standard equations, $\int{\dfrac{1}{x}dx=\ln x+c}$ and $\int{1dx}=x+c$ where $c$ is the integration constant. Using these, we will be able to evaluate the given integral.

**Complete step-by-step solution:**The given integral is $I=\int{\dfrac{2\sin \theta +\cos \theta }{7\sin \theta -5\cos \theta }d\theta }$. The denominator is $7\sin \theta -5\cos \theta $ and the numerator is $2\sin \theta +\cos \theta $. It will become easier to find the value of the integration if we simplify the integrand. Looking at the integrand, we can aim to write the numerator in terms of the denominator. Now, the coefficients of the sine and cosine functions in the numerator is 2 and 1 respectively. The numerator of the integrand can be modified and rewritten in the following manner,

$2\sin \theta +\cos \theta =\dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta $

The number 74 is works in this case because $74=49+25$ which is nothing but $74={{7}^{2}}+{{5}^{2}}$ which are the coefficients of the sine and cosine function in the denominator.

We will split the right hand side of the above equation so that we have the denominator as a part of the numerator expression, as follows,

$\begin{align}

& \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\dfrac{63+85}{74}\sin \theta +\dfrac{119-45}{74}\cos \theta \\

& \Rightarrow \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\left( \dfrac{63}{74}\sin \theta -\dfrac{45}{74}\cos \theta \right)+\left( \dfrac{85}{74}\sin \theta +\dfrac{119}{74}\cos \theta \right) \\

& \therefore \dfrac{148}{74}\sin \theta +\dfrac{74}{74}\cos \theta =\dfrac{9}{74}\left( 7\sin \theta -5\cos \theta \right)+\dfrac{17}{74}\left( 5\sin \theta +7\cos \theta \right) \\

\end{align}$

Now, substituting this expression in place of the numerator in the integrand, we get

$\begin{align}

& I=\int{\dfrac{\dfrac{9}{74}\left( 7\sin \theta -5\cos \theta \right)+\dfrac{17}{74}\left( 5\sin \theta +7\cos \theta \right)}{7\sin \theta -5\cos \theta }}d\theta \\

& =\dfrac{9}{74}\int{\dfrac{\left( 7\sin \theta -5\cos \theta \right)}{7\sin \theta -5\cos \theta }d\theta +\dfrac{17}{74}\int{\dfrac{\left( 5\sin \theta +7\cos \theta \right)}{7\sin \theta -5\cos \theta }}}d\theta

\end{align}$

Now, let us integrate the first term of $I$.

$\dfrac{9}{74}\int{\dfrac{\left( 7\sin \theta -5\cos \theta \right)}{7\sin \theta -5\cos \theta }d\theta =\dfrac{9}{74}\int{1d\theta }}$

We know that $\int{1dx}=x+c$. Therefore, the first term of $I$ equals to $\dfrac{9}{74}\theta +{{c}_{1}}$.

Now, for the second term of $I$, we will use the method of substitution. Let $u=7\sin \theta -5\cos \theta $. Therefore, on differentiating $u$ we have the following,

$\begin{align}

& \dfrac{du}{d\theta }=7\cos \theta +5\sin \theta \\

& \therefore du=\left( 7\cos \theta +5\sin \theta \right)d\theta \\

\end{align}$

Therefore, the second term of $I$ will become $\dfrac{17}{74}\int{\dfrac{1}{u}du}$. Now, we know that $\int{\dfrac{1}{x}dx=\ln x+c}$.

So, the second term of $I$ equals to $\dfrac{17}{74}\ln \left( u \right)=\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+{{c}_{2}}$.

Therefore, we have the following equation,

$\begin{align}

& I=\dfrac{9}{74}\theta +{{c}_{1}}+\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+{{c}_{2}} \\

& =\dfrac{9}{74}\theta +\dfrac{17}{74}\ln \left( 7\sin \theta -5\cos \theta \right)+C

\end{align}$

**Note:**We were able to rewrite the numerator of the integrand in such a way that the expression in the denominator was a part of the modified numerator. Also, the sine and cosine functions are related to each other in integration and differentiation. Therefore, we can use the substitution method with convenience for evaluating this integral. The calculations and substitutions need to be done carefully so that we can avoid making any minor mistakes.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail