Answer
Verified
493.8k+ views
Hint: This integral can be solved by substituting t as a trigonometric function. Substitute t = $\sin x$. Then, use the formulas of integration to solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it