
Evaluate the following integral: $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$.
Answer
605.4k+ views
Hint: This integral can be solved by substituting t as a trigonometric function. Substitute t = $\sin x$. Then, use the formulas of integration to solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

