
Evaluate the following integral: $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$.
Answer
620.1k+ views
Hint: This integral can be solved by substituting t as a trigonometric function. Substitute t = $\sin x$. Then, use the formulas of integration to solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In integration, we have a formula $\int{\cos nx=\dfrac{\sin nx}{n}}$ . . . . . . . . . . . . (1)
In trigonometry, we have a formula $\cos 2x=1-2{{\sin }^{2}}x$. From this formula, we can write,
${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ . . . . . . . . . . . . . . . (2)
In trigonometry, we have a formula $\cos 2x=2{{\cos }^{2}}x-1$. From this formula, we can write,
\[{{\cos }^{2}}x=\dfrac{\cos 2x+1}{2}\] . . . . . . . . . . . . (3)
Also, in trigonometry, we have a formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$. . . . . . . . . . . (4)
In algebra, we have a formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. . . . . . . . (5)
In the question, we are required to evaluate $\int{\dfrac{{{t}^{4}}dt}{\sqrt{1-{{t}^{2}}}}}$. Let us substitute t = $\sin x$. Since t = $\sin x$, dt = $\cos xdx$.
$\Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{1-{{\sin }^{2}}x}}}$
Using formula (4), we can write it as,
\[\begin{align}
& \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\sqrt{{{\cos }^{2}}x}}} \\
& \Rightarrow \int{\dfrac{{{\sin }^{4}}x\cos xdx}{\cos x}} \\
& \Rightarrow \int{{{\sin }^{4}}xdx} \\
& \Rightarrow \int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx} \\
\end{align}\]
Using formula (2), we can write it as,
\[\begin{align}
& \int{{{\left( \dfrac{1-\cos 2x}{2} \right)}^{2}}dx} \\
& \Rightarrow \dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}dx} \\
\end{align}\]
Using formula (5), we can write it as,
\[\begin{align}
& \dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)dx} \\
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{{{\cos }^{2}}2xdx-2\int{\cos 2xdx}} \right) \\
\end{align}\]
Using formula (3), we can write \[{{\cos }^{2}}2x=\dfrac{\cos 4x+1}{2}\].
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\left( \int{1dx}+\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-2\int{\cos 2xdx}} \right) \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{4}\int{\left( \dfrac{\cos 4x+1}{2} \right)dx-\dfrac{1}{4}.2\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\left( \cos 4x+1 \right)dx-\dfrac{1}{2}\int{\cos 2xdx}} \\
& \Rightarrow \dfrac{1}{4}\int{1dx}+\dfrac{1}{8}\int{\cos 4xdx}+\dfrac{1}{8}\int{1dx}-\dfrac{1}{2}\int{\cos 2xdx} \\
\end{align}\]
From formula (1), we can write \[\int{\cos 4xdx}=\dfrac{\sin 4x}{4}\] and \[\int{\cos 2xdx}=\dfrac{\sin 2x}{2}\]. Also, $\int{1dx}=x$. Substituting these integrals in the above integral, we get,
\[\dfrac{1}{4}x+\dfrac{1}{8}\dfrac{\sin 4x}{4}+\dfrac{1}{8}x-\dfrac{1}{2}\dfrac{\sin 2x}{2}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}\] . . . . . . . . . . . . (6)
In trigonometry, we have a formula.
$\sin 2x=2\sin x\cos x$
Using formula (4) in the above equation, we get,
$\sin 2x=2\sin x\sqrt{1-{{\sin }^{2}}x}$ . . . . . . . . (7)
Also, we have a formula $\sin 4x=2\sin 2x\cos 2x$. Substituting sin2x from formula (7) and $\cos 2x=1-2{{\sin }^{2}}x$ from formula (2), we get,
$\sin 4x=2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)$ . . . . . . . . (8)
Substituting equation (7) and equation (8) in equation (6), we get,
\[\dfrac{3x}{8}+\dfrac{2\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{32}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\]
\[\Rightarrow \dfrac{3x}{8}+\dfrac{\left( 2\sin x\sqrt{1-{{\sin }^{2}}x} \right)\left( 1-2{{\sin }^{2}}x \right)}{16}-\dfrac{2\sin x\sqrt{1-{{\sin }^{2}}x}}{4}\] . . . . . . . . . . . . . . . . (9)
Since we had substituted t = sinx, substituting sinx = t and x = ${{\sin }^{-1}}t$, we get,
\[\begin{align}
& \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 1-2{{t}^{2}} \right)}{16}-\dfrac{2t\sqrt{1-{{t}^{2}}}}{4} \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)}{4}-1 \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{\left( 1-2{{t}^{2}} \right)-4}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}+\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)}{4}\left( \dfrac{-2{{t}^{2}}-3}{4} \right) \\
& \Rightarrow \dfrac{3{{\sin }^{-1}}t}{8}-\dfrac{\left( 2t\sqrt{1-{{t}^{2}}} \right)\left( 2{{t}^{2}}+3 \right)}{16} \\
\end{align}\]
Note: There is a possibility that one may commit a mistake while evaluating the integral of cosx. There is a possibility that one may write the integral of cosx as -sinx instead of sinx which may lead us to an incorrect answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

