
Evaluate the following indefinite integral: $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}$?
Answer
486k+ views
Hint: We start solving the problem by recalling the uv rule of integration as $\int{u\left( x \right)v\left( x \right)dx}=u\left( x \right)\int{v\left( x \right)dx}-\int{\left( \dfrac{d\left( u\left( x \right) \right)}{dx}\int{v\left( x \right)dx} \right)dx}$ by assuming suitable functions for $u\left( x \right)$ and $v\left( x \right)$. We then use $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ assume $\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}={{I}_{1}}$. We then solve ${{I}_{1}}$ first by replacing $1-{{x}^{2}}$ with t and $dx$ with $dt$ and using the fact $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$. We then substitute the value of ${{I}_{1}}$ in I and make necessary calculations to find the answer for the given integral.
Complete step by step answer:
According to the problem, we need to solve the given indefinite integral $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}$.
Let us assume the given indefinite integral be $I=\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}$.
We know that from uv rule of integration, we have $\int{u\left( x \right)v\left( x \right)dx}=u\left( x \right)\int{v\left( x \right)dx}-\int{\left( \dfrac{d\left( u\left( x \right) \right)}{dx}\int{v\left( x \right)dx} \right)dx}$. Let us this rule to solve for I.
So, we have $u\left( x \right)={{\sin }^{-1}}x$ and $v\left( x \right)=\dfrac{x}{\sqrt{1-{{x}^{2}}}}$.
$\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx$.
We know that $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
$\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx$.
Let us assume $\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}={{I}_{1}}$. So, we get $I={{\sin }^{-1}}x{{I}_{1}}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}{{I}_{1}} \right)}dx$ ---(1).
$\Rightarrow {{I}_{1}}=\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}$ ---(2).
Let us assume $1-{{x}^{2}}=t$ ---(3). Now, apply differential on both sides.
$\Rightarrow d\left( 1-{{x}^{2}} \right)=d\left( t \right)$.
We know that $d\left( a+b \right)=d\left( a \right)+d\left( b \right)$.
\[\Rightarrow d\left( 1 \right)-d\left( {{x}^{2}} \right)=dt\].
We know that for a constant c $d\left( c \right)=0$ and $d\left( {{x}^{n}} \right)=n{{x}^{n-1}}dx$.
\[\Rightarrow 0-2xdx=dt\].
\[\Rightarrow -2xdx=dt\].
\[\Rightarrow xdx=\dfrac{-dt}{2}\] ---(4).
Let us substitute equation (3) and (4) in equation (2).
So, we get ${{I}_{1}}=\int{\dfrac{-1}{\sqrt{t}}\dfrac{dt}{2}}$.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\int{{{t}^{\dfrac{-1}{2}}}dt}$.
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$, where C is constant of integration.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \right)+C$.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right)+C$.
$\Rightarrow {{I}_{1}}=-{{t}^{\dfrac{1}{2}}}+C$.
From equation (3), we have $1-{{x}^{2}}=t$. So, we have ${{I}_{1}}=-\sqrt{1-{{x}^{2}}}+C$ and let us substitute this in equation (1).
$\Rightarrow I={{\sin }^{-1}}x\left( -\sqrt{1-{{x}^{2}}} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\left( -\sqrt{1-{{x}^{2}}} \right) \right)}dx$, here we neglected constant of integration as we accommodate in final constant of integration.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-\int{\left( -1 \right)}dx$.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+\int{dx}$.
We know that $\int{adx}=ax+C$.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
So, we have found the result of integration as $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
∴ $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
Note: Whenever we get problems involving integration of logarithmic and inverse trigonometric functions, we make use of the uv rule of integration to reduce the calculation time. We should perform every step carefully in order to avoid calculation mistakes in the problem. We should not forget to add constant integration while solving problems which involve indefinite integrals as it is the most common mistake done by students.
Complete step by step answer:
According to the problem, we need to solve the given indefinite integral $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}$.
Let us assume the given indefinite integral be $I=\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}$.
We know that from uv rule of integration, we have $\int{u\left( x \right)v\left( x \right)dx}=u\left( x \right)\int{v\left( x \right)dx}-\int{\left( \dfrac{d\left( u\left( x \right) \right)}{dx}\int{v\left( x \right)dx} \right)dx}$. Let us this rule to solve for I.
So, we have $u\left( x \right)={{\sin }^{-1}}x$ and $v\left( x \right)=\dfrac{x}{\sqrt{1-{{x}^{2}}}}$.
$\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx$.
We know that $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
$\Rightarrow I={{\sin }^{-1}}x\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx} \right)}dx$.
Let us assume $\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}={{I}_{1}}$. So, we get $I={{\sin }^{-1}}x{{I}_{1}}-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}{{I}_{1}} \right)}dx$ ---(1).
$\Rightarrow {{I}_{1}}=\int{\dfrac{x}{\sqrt{1-{{x}^{2}}}}dx}$ ---(2).
Let us assume $1-{{x}^{2}}=t$ ---(3). Now, apply differential on both sides.
$\Rightarrow d\left( 1-{{x}^{2}} \right)=d\left( t \right)$.
We know that $d\left( a+b \right)=d\left( a \right)+d\left( b \right)$.
\[\Rightarrow d\left( 1 \right)-d\left( {{x}^{2}} \right)=dt\].
We know that for a constant c $d\left( c \right)=0$ and $d\left( {{x}^{n}} \right)=n{{x}^{n-1}}dx$.
\[\Rightarrow 0-2xdx=dt\].
\[\Rightarrow -2xdx=dt\].
\[\Rightarrow xdx=\dfrac{-dt}{2}\] ---(4).
Let us substitute equation (3) and (4) in equation (2).
So, we get ${{I}_{1}}=\int{\dfrac{-1}{\sqrt{t}}\dfrac{dt}{2}}$.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\int{{{t}^{\dfrac{-1}{2}}}dt}$.
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$, where C is constant of integration.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{-1}{2}+1}}}{\dfrac{-1}{2}+1} \right)+C$.
$\Rightarrow {{I}_{1}}=\dfrac{-1}{2}\left( \dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \right)+C$.
$\Rightarrow {{I}_{1}}=-{{t}^{\dfrac{1}{2}}}+C$.
From equation (3), we have $1-{{x}^{2}}=t$. So, we have ${{I}_{1}}=-\sqrt{1-{{x}^{2}}}+C$ and let us substitute this in equation (1).
$\Rightarrow I={{\sin }^{-1}}x\left( -\sqrt{1-{{x}^{2}}} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}\left( -\sqrt{1-{{x}^{2}}} \right) \right)}dx$, here we neglected constant of integration as we accommodate in final constant of integration.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-\int{\left( -1 \right)}dx$.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+\int{dx}$.
We know that $\int{adx}=ax+C$.
$\Rightarrow I=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
So, we have found the result of integration as $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
∴ $\int{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}dx}=-\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x+x+C$.
Note: Whenever we get problems involving integration of logarithmic and inverse trigonometric functions, we make use of the uv rule of integration to reduce the calculation time. We should perform every step carefully in order to avoid calculation mistakes in the problem. We should not forget to add constant integration while solving problems which involve indefinite integrals as it is the most common mistake done by students.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
