
Evaluate the following: ${\cos ^{ - 1}}\left( {\cos 12} \right)$.
Answer
552.6k+ views
Hint: Here we will use the value of inverse trigonometric cosine function of the form ${\cos ^{ - 1}}\left( {\cos x} \right) = x$ when $x$ lies in the interval $\left[ {0,\pi } \right]$. So, we will check for the quadrant in which the argument of the cosine function lies to get the exact value of the function.
Complete step by step solution:
In the question, we have to find the value of the expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$.
Here we will use the value of inverse trigonometric cosine function of the form ${\cos ^{ - 1}}\left( {\cos x} \right) = x$ when $x$ lies in the interval $\left[ {0,\pi } \right]$.
But when $x$ lies in the interval $\dfrac{{3\pi }}{2} < x < 2\pi $, then ${\cos ^{ - 1}}\left( {\cos x} \right) = 2\pi - x$. So, this is an important concept that is to be used here.
Now, in the problem we have $\cos 12$ which has the argument as 12 which lies in the interval,
$ \Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi $
So, to bring that in the required interval of $\left[ {0,\pi } \right]$ we can write 12 as,
$ \Rightarrow 4\pi - 12$
Also, we know that,
$ \Rightarrow \cos \left( {4\pi - 12} \right) = \cos 12$
Now, we have the expression ${\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$ for the given expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$.
Here, $\left( {4\pi - 12} \right)$ lies in the interval $\left[ {0,\pi } \right]$ and that can be shown below:
$ \Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi $
Multiply by -1 on all sides,
$ \Rightarrow - \dfrac{{7\pi }}{2} > - 12 > - 4\pi $
Add $4\pi $ on all sides,
$ \Rightarrow 4\pi - \dfrac{{7\pi }}{2} > 4\pi - 12 > 4\pi - 4\pi $
Subtract the terms to get the interval,
$ \Rightarrow \dfrac{\pi }{2} > 4\pi - 12 > 0$
Now, replace 12 with $\left( {4\pi - 12} \right)$ in the expression,
$ \Rightarrow {\cos ^{ - 1}}\left( {\cos 12} \right) = {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$
Use the formula, ${\cos ^{ - 1}}\left( {\cos x} \right) = x$ to get the value,
$\therefore {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right) = 4\pi - 12$
Hence, the value of the expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$ is $4\pi - 12$.
Note: We have to be careful in finding the value of the inverse trigonometric function. It is important to check the quadrant in which the argument of the trigonometric function lies. So \[{\cos ^{ - 1}}\left( {\cos x} \right) = x\] is not true for all $x$, but this is only true if the argument $x$ lies in the interval $\left[ {0,\pi } \right]$.
Complete step by step solution:
In the question, we have to find the value of the expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$.
Here we will use the value of inverse trigonometric cosine function of the form ${\cos ^{ - 1}}\left( {\cos x} \right) = x$ when $x$ lies in the interval $\left[ {0,\pi } \right]$.
But when $x$ lies in the interval $\dfrac{{3\pi }}{2} < x < 2\pi $, then ${\cos ^{ - 1}}\left( {\cos x} \right) = 2\pi - x$. So, this is an important concept that is to be used here.
Now, in the problem we have $\cos 12$ which has the argument as 12 which lies in the interval,
$ \Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi $
So, to bring that in the required interval of $\left[ {0,\pi } \right]$ we can write 12 as,
$ \Rightarrow 4\pi - 12$
Also, we know that,
$ \Rightarrow \cos \left( {4\pi - 12} \right) = \cos 12$
Now, we have the expression ${\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$ for the given expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$.
Here, $\left( {4\pi - 12} \right)$ lies in the interval $\left[ {0,\pi } \right]$ and that can be shown below:
$ \Rightarrow \dfrac{{7\pi }}{2} < 12 < 4\pi $
Multiply by -1 on all sides,
$ \Rightarrow - \dfrac{{7\pi }}{2} > - 12 > - 4\pi $
Add $4\pi $ on all sides,
$ \Rightarrow 4\pi - \dfrac{{7\pi }}{2} > 4\pi - 12 > 4\pi - 4\pi $
Subtract the terms to get the interval,
$ \Rightarrow \dfrac{\pi }{2} > 4\pi - 12 > 0$
Now, replace 12 with $\left( {4\pi - 12} \right)$ in the expression,
$ \Rightarrow {\cos ^{ - 1}}\left( {\cos 12} \right) = {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$
Use the formula, ${\cos ^{ - 1}}\left( {\cos x} \right) = x$ to get the value,
$\therefore {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right) = 4\pi - 12$
Hence, the value of the expression ${\cos ^{ - 1}}\left( {\cos 12} \right)$ is $4\pi - 12$.
Note: We have to be careful in finding the value of the inverse trigonometric function. It is important to check the quadrant in which the argument of the trigonometric function lies. So \[{\cos ^{ - 1}}\left( {\cos x} \right) = x\] is not true for all $x$, but this is only true if the argument $x$ lies in the interval $\left[ {0,\pi } \right]$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

