
Evaluate $\int{{{\sin }^{3}}x{{\cos }^{3}}x}$?
Answer
503.7k+ views
Hint: To solve this question, you need to know some basic trigonometric formula and basic integration (by substitution method).
sin$^{2}x+{{\cos }^{2}}x=1$ and $\int{tdt=\dfrac{{{t}^{2}}}{2}}$.(we are going to use both formula in this question).
Complete step by step solution:
Integration: It can be defined as the process of finding the antiderivative. It is used to find many quantities like area, volume etc. integral is of two types
Indefinite integrals: In which lower and upper values are not defined and therefore, we use a constant term in the end.
Definite integration: In which lower and upper values are defined and there is no need to mention a constant term in the end. It gives a finite value.
As given in the question$\int{{{\sin }^{3}}x{{\cos }^{3}}x} dx$ we rearrange the terms and rewrite the integral term as I=$\int{{{\sin }^{3}}x{{\cos }^{2}}x\cos x} dx$ and now we substitute the value of cos$^{2}x$as (sin$^{2}x+{{\cos }^{2}}x=1$ $\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x$).
After substituting the value of cos$^{2}x$ our integral becomes: I=$\int{{{\sin }^{3}}x}(1-{{\sin }^{2}}x)\cos x$dx after that we substitute the value of sinx = t then on differentiating both sides it becomes cosx dx = t dt.
Integral terms become I = $\int{{{t}^{3}}(1-{{t}^{2}})dt}$ and after simplification it becomes $\int{{{t}^{3}}-{{t}^{5}}dt}$after integration it becomes $\dfrac{{{t}^{4}}}{4}-\dfrac{{{t}^{6}}}{6}+c$( where c is any constant value).
Now we substitute the value of $t$ from above i.e., sinx.
Integral becomes I = $\dfrac{{{\sin }^{4}}x}{4}-\dfrac{{{\sin }^{6}}x}{6}+c$( where c is any constant term).
Note:
You should remember the formula of some basic integration like sinx , cosx , x$^{n}$etc. and know the method of integration by substitution , and after you can easily manipulate the terms and find the result.
sin$^{2}x+{{\cos }^{2}}x=1$ and $\int{tdt=\dfrac{{{t}^{2}}}{2}}$.(we are going to use both formula in this question).
Complete step by step solution:
Integration: It can be defined as the process of finding the antiderivative. It is used to find many quantities like area, volume etc. integral is of two types
Indefinite integrals: In which lower and upper values are not defined and therefore, we use a constant term in the end.
Definite integration: In which lower and upper values are defined and there is no need to mention a constant term in the end. It gives a finite value.
As given in the question$\int{{{\sin }^{3}}x{{\cos }^{3}}x} dx$ we rearrange the terms and rewrite the integral term as I=$\int{{{\sin }^{3}}x{{\cos }^{2}}x\cos x} dx$ and now we substitute the value of cos$^{2}x$as (sin$^{2}x+{{\cos }^{2}}x=1$ $\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x$).
After substituting the value of cos$^{2}x$ our integral becomes: I=$\int{{{\sin }^{3}}x}(1-{{\sin }^{2}}x)\cos x$dx after that we substitute the value of sinx = t then on differentiating both sides it becomes cosx dx = t dt.
Integral terms become I = $\int{{{t}^{3}}(1-{{t}^{2}})dt}$ and after simplification it becomes $\int{{{t}^{3}}-{{t}^{5}}dt}$after integration it becomes $\dfrac{{{t}^{4}}}{4}-\dfrac{{{t}^{6}}}{6}+c$( where c is any constant value).
Now we substitute the value of $t$ from above i.e., sinx.
Integral becomes I = $\dfrac{{{\sin }^{4}}x}{4}-\dfrac{{{\sin }^{6}}x}{6}+c$( where c is any constant term).
Note:
You should remember the formula of some basic integration like sinx , cosx , x$^{n}$etc. and know the method of integration by substitution , and after you can easily manipulate the terms and find the result.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

How is democracy better than other forms of government class 12 social science CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

