Evaluate $\int{{{\sin }^{3}}x{{\cos }^{3}}x}$?
Answer
Verified
403.2k+ views
Hint: To solve this question, you need to know some basic trigonometric formula and basic integration (by substitution method).
sin$^{2}x+{{\cos }^{2}}x=1$ and $\int{tdt=\dfrac{{{t}^{2}}}{2}}$.(we are going to use both formula in this question).
Complete step by step solution:
Integration: It can be defined as the process of finding the antiderivative. It is used to find many quantities like area, volume etc. integral is of two types
Indefinite integrals: In which lower and upper values are not defined and therefore, we use a constant term in the end.
Definite integration: In which lower and upper values are defined and there is no need to mention a constant term in the end. It gives a finite value.
As given in the question$\int{{{\sin }^{3}}x{{\cos }^{3}}x} dx$ we rearrange the terms and rewrite the integral term as I=$\int{{{\sin }^{3}}x{{\cos }^{2}}x\cos x} dx$ and now we substitute the value of cos$^{2}x$as (sin$^{2}x+{{\cos }^{2}}x=1$ $\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x$).
After substituting the value of cos$^{2}x$ our integral becomes: I=$\int{{{\sin }^{3}}x}(1-{{\sin }^{2}}x)\cos x$dx after that we substitute the value of sinx = t then on differentiating both sides it becomes cosx dx = t dt.
Integral terms become I = $\int{{{t}^{3}}(1-{{t}^{2}})dt}$ and after simplification it becomes $\int{{{t}^{3}}-{{t}^{5}}dt}$after integration it becomes $\dfrac{{{t}^{4}}}{4}-\dfrac{{{t}^{6}}}{6}+c$( where c is any constant value).
Now we substitute the value of $t$ from above i.e., sinx.
Integral becomes I = $\dfrac{{{\sin }^{4}}x}{4}-\dfrac{{{\sin }^{6}}x}{6}+c$( where c is any constant term).
Note:
You should remember the formula of some basic integration like sinx , cosx , x$^{n}$etc. and know the method of integration by substitution , and after you can easily manipulate the terms and find the result.
sin$^{2}x+{{\cos }^{2}}x=1$ and $\int{tdt=\dfrac{{{t}^{2}}}{2}}$.(we are going to use both formula in this question).
Complete step by step solution:
Integration: It can be defined as the process of finding the antiderivative. It is used to find many quantities like area, volume etc. integral is of two types
Indefinite integrals: In which lower and upper values are not defined and therefore, we use a constant term in the end.
Definite integration: In which lower and upper values are defined and there is no need to mention a constant term in the end. It gives a finite value.
As given in the question$\int{{{\sin }^{3}}x{{\cos }^{3}}x} dx$ we rearrange the terms and rewrite the integral term as I=$\int{{{\sin }^{3}}x{{\cos }^{2}}x\cos x} dx$ and now we substitute the value of cos$^{2}x$as (sin$^{2}x+{{\cos }^{2}}x=1$ $\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x$).
After substituting the value of cos$^{2}x$ our integral becomes: I=$\int{{{\sin }^{3}}x}(1-{{\sin }^{2}}x)\cos x$dx after that we substitute the value of sinx = t then on differentiating both sides it becomes cosx dx = t dt.
Integral terms become I = $\int{{{t}^{3}}(1-{{t}^{2}})dt}$ and after simplification it becomes $\int{{{t}^{3}}-{{t}^{5}}dt}$after integration it becomes $\dfrac{{{t}^{4}}}{4}-\dfrac{{{t}^{6}}}{6}+c$( where c is any constant value).
Now we substitute the value of $t$ from above i.e., sinx.
Integral becomes I = $\dfrac{{{\sin }^{4}}x}{4}-\dfrac{{{\sin }^{6}}x}{6}+c$( where c is any constant term).
Note:
You should remember the formula of some basic integration like sinx , cosx , x$^{n}$etc. and know the method of integration by substitution , and after you can easily manipulate the terms and find the result.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE