Answer

Verified

388.5k+ views

**Hint:**We first break the functions in the numerator of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$. We take the $\dfrac{dy}{dx}$ altogether. We integrate the functions separately. Then we take the addition to complete the problem. We also use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x+c,\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.

**Complete step-by-step solution:**

We first break the integral function as $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{1+{{x}^{2}}}dx}+\int{\dfrac{x}{1+{{x}^{2}}}dx}$.

We integrate these two functions and take the addition to get the final solution.

We use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x$.

For the second part $\int{\dfrac{x}{1+{{x}^{2}}}dx}$, we are going to change the base of the integral where we assume the new variable of $z=1+{{x}^{2}}$.

We take the new base and differentiate the equation $z={{x}^{2}}+1$.

We know that the differentiated form of ${{x}^{2}}$ is $2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.

Differentiating both sides with respect to $x$, we get

\[\begin{align}

& \dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( {{x}^{2}}+1 \right) \\

& \Rightarrow \dfrac{dz}{dx}=2x \\

\end{align}\]

Now we convert the differentiation into differential form where \[\dfrac{dz}{2}=xdx\].

Now we try to reform the main function of the integration where $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.

We now replace all those values with \[\dfrac{dz}{2}=xdx\] and $z={{x}^{2}}+1$ in the $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.

We simplify the integral equation by the formula $\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.

$\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{dz}{2z}}=\dfrac{1}{2}\int{\dfrac{dz}{z}}=\dfrac{1}{2}\log \left| z \right|$

We put the values where $z={{x}^{2}}+1$. We got $\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|$.

We take the integral constant of $c$ as the final one. So, $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$

**The final integral of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$ is ${{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$.**

**Note:**We can also solve those integrations using the base change for ratio $z={{x}^{2}}$. In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

In 1946 the Interim Government was formed under a Sardar class 11 sst CBSE

Change the following sentences into negative and interrogative class 10 english CBSE