Answer
Verified
424.2k+ views
Hint: We first break the functions in the numerator of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$. We take the $\dfrac{dy}{dx}$ altogether. We integrate the functions separately. Then we take the addition to complete the problem. We also use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x+c,\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
Complete step-by-step solution:
We first break the integral function as $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{1+{{x}^{2}}}dx}+\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We integrate these two functions and take the addition to get the final solution.
We use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x$.
For the second part $\int{\dfrac{x}{1+{{x}^{2}}}dx}$, we are going to change the base of the integral where we assume the new variable of $z=1+{{x}^{2}}$.
We take the new base and differentiate the equation $z={{x}^{2}}+1$.
We know that the differentiated form of ${{x}^{2}}$ is $2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
Differentiating both sides with respect to $x$, we get
\[\begin{align}
& \dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( {{x}^{2}}+1 \right) \\
& \Rightarrow \dfrac{dz}{dx}=2x \\
\end{align}\]
Now we convert the differentiation into differential form where \[\dfrac{dz}{2}=xdx\].
Now we try to reform the main function of the integration where $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We now replace all those values with \[\dfrac{dz}{2}=xdx\] and $z={{x}^{2}}+1$ in the $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We simplify the integral equation by the formula $\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
$\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{dz}{2z}}=\dfrac{1}{2}\int{\dfrac{dz}{z}}=\dfrac{1}{2}\log \left| z \right|$
We put the values where $z={{x}^{2}}+1$. We got $\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|$.
We take the integral constant of $c$ as the final one. So, $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$
The final integral of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$ is ${{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$.
Note: We can also solve those integrations using the base change for ratio $z={{x}^{2}}$. In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.
Complete step-by-step solution:
We first break the integral function as $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{1+{{x}^{2}}}dx}+\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We integrate these two functions and take the addition to get the final solution.
We use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x$.
For the second part $\int{\dfrac{x}{1+{{x}^{2}}}dx}$, we are going to change the base of the integral where we assume the new variable of $z=1+{{x}^{2}}$.
We take the new base and differentiate the equation $z={{x}^{2}}+1$.
We know that the differentiated form of ${{x}^{2}}$ is $2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
Differentiating both sides with respect to $x$, we get
\[\begin{align}
& \dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( {{x}^{2}}+1 \right) \\
& \Rightarrow \dfrac{dz}{dx}=2x \\
\end{align}\]
Now we convert the differentiation into differential form where \[\dfrac{dz}{2}=xdx\].
Now we try to reform the main function of the integration where $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We now replace all those values with \[\dfrac{dz}{2}=xdx\] and $z={{x}^{2}}+1$ in the $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We simplify the integral equation by the formula $\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
$\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{dz}{2z}}=\dfrac{1}{2}\int{\dfrac{dz}{z}}=\dfrac{1}{2}\log \left| z \right|$
We put the values where $z={{x}^{2}}+1$. We got $\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|$.
We take the integral constant of $c$ as the final one. So, $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$
The final integral of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$ is ${{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$.
Note: We can also solve those integrations using the base change for ratio $z={{x}^{2}}$. In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE