
Evaluate \[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx\] .
Answer
506.1k+ views
Hint: This is a problem in which we can see composite function. To find the integration we will write the cos function in the form of sin. As we know, \[\cos x = \sin \left( {\dfrac{\pi }{2} - x} \right)\] . now the integral will be of the form, \[{\sin ^{ - 1}}\left( {\sin \theta } \right)\] and we know that, \[{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta \] . So after that the integration will be found.
Complete step-by-step answer:
Given that,
\[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx\]
We can write the cos function as, \[\cos x = \sin \left( {\dfrac{\pi }{2} - x} \right)\]
Now the integration function will be,
\[ = \int {{{\sin }^{ - 1}}\left( {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
We know that, \[{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta \]
So we can rewrite the function as,
\[ = \int {\left( {\dfrac{\pi }{2} - x} \right)dx} \]
Now we will separate the integrations,
\[ = \int {\dfrac{\pi }{2}dx - \int {xdx} } \]
We know that integration of a constant is x,
\[ = \dfrac{\pi }{2}\int {dx} - \int {xdx} \]
Taking the integrations,
\[ = \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\] as, \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
This is the final answer.
\[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx = \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\]
So, the correct answer is “ \[\dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\] ”.
Note: Note that there is no need for using substitution here. That will remove cos function but the derivative of cos will not be replaced by anything. And the use of angle properties will make the problem easier. Also don’t forget to write the constant.
Complete step-by-step answer:
Given that,
\[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx\]
We can write the cos function as, \[\cos x = \sin \left( {\dfrac{\pi }{2} - x} \right)\]
Now the integration function will be,
\[ = \int {{{\sin }^{ - 1}}\left( {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
We know that, \[{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta \]
So we can rewrite the function as,
\[ = \int {\left( {\dfrac{\pi }{2} - x} \right)dx} \]
Now we will separate the integrations,
\[ = \int {\dfrac{\pi }{2}dx - \int {xdx} } \]
We know that integration of a constant is x,
\[ = \dfrac{\pi }{2}\int {dx} - \int {xdx} \]
Taking the integrations,
\[ = \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\] as, \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
This is the final answer.
\[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx = \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\]
So, the correct answer is “ \[\dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c\] ”.
Note: Note that there is no need for using substitution here. That will remove cos function but the derivative of cos will not be replaced by anything. And the use of angle properties will make the problem easier. Also don’t forget to write the constant.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

