Answer

Verified

340.8k+ views

**Hint:**We have the integration which has an exponential function. Firstly we take the function to expect exponential and simplify it we do some rearrangement in the numerator and split the function into two parts. We convert the numerator in the form \[{a^2} - {b^2}\] of the first part then we apply the formula of \[{a^2} - {b^2}\]. Also, we break the denominator \[1 - {x^n}\] in \[\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} \]. The factor \[\sqrt {1 - {x^n}} \] cancels each other. We get a function in the integration with exponential function with text and its derivative has resulted in integration. So we apply this result and solve it.

**Complete step-by-step solution:**

We have \[\int {{e^x}} \dfrac{{1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}dx\]

Let consider

\[ \Rightarrow \,\,\,I = \int {\dfrac{{{e^x}1 + n{x^{n - 1}} - {x^{2n}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}} dx\]-----------(1)

Here, we have \[\dfrac{{1 + n{x^{n - 1}} - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}\]

We will simplify this first

\[ \Rightarrow \,\,\dfrac{{1 + n{x^{n - 1}} - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}\]

Rearranging the numerator,we get

\[ \Rightarrow \,\,\dfrac{{1 - {x^2}^n + n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}\]

Separating the factors we get

\[ \Rightarrow \,\,\dfrac{{1 - {x^2}^n}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}\]

Numerator of first fraction can be written as

\[ \Rightarrow \,\,\dfrac{{\sqrt {1 - {x^2}^n} \cdot \sqrt {1 - {x^2}^n} }}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})(\sqrt {1 - {x^2}^n} )}}\]

On simplification, we get

\[ \Rightarrow \,\,\dfrac{{\sqrt {1 - {x^2}^n} }}{{1 - {x^n}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\]

\[ \Rightarrow \,\,\,\dfrac{{\sqrt {{{(1)}^2} - {{({x^n})}^2}} }}{{1 - {x^n}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\]

Now we have \[{(1)^2} - {({x^n})^2}\]we can apply formula \[{a^2} - {b^2} = (a + b)(a - b)\] and also \[1 - {x^n}\] can be written as \[\sqrt {1 - {x^2}} \times \sqrt {1 - {x^2}} \], then

\[ \Rightarrow \,\,\,\dfrac{{\sqrt {1 + {x^n}} \times \sqrt {1 - {x^n}} }}{{\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} }} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\]

Cancel \[\sqrt {1 - {x^n}} \] in both numerator and denominator from the first fraction

\[ \Rightarrow \,\,\dfrac{{\sqrt {1 + {x^n}} }}{{\sqrt {1 - {x^n}} }} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\]

or

\[ \Rightarrow \,\,\,\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} + \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\]

Then equation (1) becomes

\[ \Rightarrow \,\,\,\,I = \int {{e^x}\left( {\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}} + } \dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}} \right)} dx\]

Now \[\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} \]is a function and \[\dfrac{{n{x^{n - 1}}}}{{(1 - {x^n})\sqrt {1 - {x^2}^n} }}\] is derivative

And we know that \[\int {{e^x}\left( {f(x) + {f^1}(x)} \right)} \,dx = {e^x}f(x) + c\]

Therefore

\[ \Rightarrow \,\,\,I = \int {{e^x}} \left( {\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}} + } \dfrac{{n{x^{n - 1}}}}{{(1 - {x^2})\sqrt {1 - {x^2}^n} }}} \right)dx\]

\[ \Rightarrow \,\,\,I = {e^x}\sqrt {\dfrac{{1 + {x^n}}}{{1 - {x^n}}}} + c\]

\[ \Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {1 + {x^n}} \times \sqrt {1 - {x^n}} }}{{\sqrt {1 - {x^n}} \times \sqrt {1 - {x^n}} }} + c\]

\[ \Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {\left( {1 + {x^n}} \right)\left( {1 - {x^n}} \right)} }}{{{{\left( {\sqrt {1 - {x^n}} } \right)}^2}}} + c\]

Apply the formula \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] in numerator

\[ \Rightarrow \,\,\,\,I = {e^x}\dfrac{{\sqrt {{1^2} - {x^{2n}}} }}{{1 - {x^n}}} + c\]

**Note:**Integration is a way of adding slices to find the whole integration can be used to find the area, volume, and central points. It is used to find many useful quantities.

i) Unit of a function: The unit of a function is a fundament of concepts in calculus and analysis concerning the behaviour of a function near a particular input.

ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Write the difference between soap and detergent class 10 chemistry CBSE

Give 10 examples of unisexual and bisexual flowers

Differentiate between calcination and roasting class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE