
Evaluate \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
A. \[\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
B. \[\log \left( {\sec x + \tan x} \right) + 2\tan \dfrac{x}{2} + c\]
C. \[\log \left( {\sec x - \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
D. \[\log \left( {\sec x - \tan x} \right) + 2\tan \dfrac{x}{2} + c\]
Answer
553.2k+ views
Hint: Here, we will use the trigonometric identity and inverse trigonometric ratio to simplify the integrand. We will substitute the variables for the simplified integrand. Then by using the concept of integration, we will integrate the function. Integration is defined as the summation of all the discrete data.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and\[\dfrac{1}{{\cos x}} = \sec x\]
2. Derivative Formula: \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\],\[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
3. Integral Formula: \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \]
Complete Step by Step Solution:
We are given that the integral function \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, we will rewrite the integrand in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \cos x - 2\cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\dfrac{{1 + \cos x}}{{\cos x\left( {1 + \cos x} \right)}} - \dfrac{{2\cos x}}{{\cos x\left( {1 + \cos x} \right)}}dx} \]
Now, by cancelling the common terms in the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{1}{{\cos x}} - \dfrac{2}{{\left( {1 + \cos x} \right)}}dx} \]
By using the Trigonometric Identity \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - \dfrac{2}{{2{{\cos }^2}\dfrac{x}{2}}}dx} \]
Now, cancelling out the common terms, we get
\[ \Rightarrow I = \int {\sec x - \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}dx} \]
Using the Trigonometric Identity \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - {{\sec }^2}\dfrac{x}{2}dx} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\sec xdx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying \[\left( {\sec x + \tan x} \right)\] to the numerator and the denominator of the first integral function, we get
\[ \Rightarrow I = \int {\sec x \times \dfrac{{\left( {\sec x + \tan x} \right)}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying the terms, we get
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]……………………………….\[\left( 1 \right)\]
Let us consider \[u = \sec x + \tan x\]
Now, we will differentiate the variable \[u\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\] and \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]. Therefore, we get
\[ \Rightarrow du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] .
Let us consider \[v = \dfrac{x}{2} = \dfrac{1}{2}x\]
Now, we will differentiate the variable \[v\] by using the derivative formula \[\dfrac{d}{{dx}}\left( x \right) = 1\], so we get
\[\begin{array}{l} \Rightarrow dv = \dfrac{1}{2}dx\\ \Rightarrow dx = 2dv\end{array}\]
Substituting \[dx = 2dv\] and \[du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] in equation \[\left( 1 \right)\], we get
\[I = \int {\dfrac{1}{u}du - 2\int {{{\sec }^2}vdv} } \]
Now, by using Integral formula \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \] , we will integrate the function.
\[ \Rightarrow I = \ln \left( u \right) - 2\tan v + c\]
By substituting the variables \[u\] and \[v\] , we get
\[ \Rightarrow I = \ln \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
\[ \Rightarrow I = \log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
Therefore, the value of \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \] is \[\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\].
Thus, option(A) is the correct answer.
Note:
We know that Integration is the process of adding the small parts to find the whole parts. We need to keep in mind that whenever we are using the method of substitution in integration, the variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and\[\dfrac{1}{{\cos x}} = \sec x\]
2. Derivative Formula: \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\],\[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
3. Integral Formula: \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \]
Complete Step by Step Solution:
We are given that the integral function \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, we will rewrite the integrand in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \cos x - 2\cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\dfrac{{1 + \cos x}}{{\cos x\left( {1 + \cos x} \right)}} - \dfrac{{2\cos x}}{{\cos x\left( {1 + \cos x} \right)}}dx} \]
Now, by cancelling the common terms in the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{1}{{\cos x}} - \dfrac{2}{{\left( {1 + \cos x} \right)}}dx} \]
By using the Trigonometric Identity \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - \dfrac{2}{{2{{\cos }^2}\dfrac{x}{2}}}dx} \]
Now, cancelling out the common terms, we get
\[ \Rightarrow I = \int {\sec x - \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}dx} \]
Using the Trigonometric Identity \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - {{\sec }^2}\dfrac{x}{2}dx} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\sec xdx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying \[\left( {\sec x + \tan x} \right)\] to the numerator and the denominator of the first integral function, we get
\[ \Rightarrow I = \int {\sec x \times \dfrac{{\left( {\sec x + \tan x} \right)}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying the terms, we get
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]……………………………….\[\left( 1 \right)\]
Let us consider \[u = \sec x + \tan x\]
Now, we will differentiate the variable \[u\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\] and \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]. Therefore, we get
\[ \Rightarrow du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] .
Let us consider \[v = \dfrac{x}{2} = \dfrac{1}{2}x\]
Now, we will differentiate the variable \[v\] by using the derivative formula \[\dfrac{d}{{dx}}\left( x \right) = 1\], so we get
\[\begin{array}{l} \Rightarrow dv = \dfrac{1}{2}dx\\ \Rightarrow dx = 2dv\end{array}\]
Substituting \[dx = 2dv\] and \[du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] in equation \[\left( 1 \right)\], we get
\[I = \int {\dfrac{1}{u}du - 2\int {{{\sec }^2}vdv} } \]
Now, by using Integral formula \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \] , we will integrate the function.
\[ \Rightarrow I = \ln \left( u \right) - 2\tan v + c\]
By substituting the variables \[u\] and \[v\] , we get
\[ \Rightarrow I = \ln \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
\[ \Rightarrow I = \log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
Therefore, the value of \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \] is \[\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\].
Thus, option(A) is the correct answer.
Note:
We know that Integration is the process of adding the small parts to find the whole parts. We need to keep in mind that whenever we are using the method of substitution in integration, the variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

