Answer
Verified
415.2k+ views
Hint: Here, we will use the trigonometric identity and inverse trigonometric ratio to simplify the integrand. We will substitute the variables for the simplified integrand. Then by using the concept of integration, we will integrate the function. Integration is defined as the summation of all the discrete data.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and\[\dfrac{1}{{\cos x}} = \sec x\]
2. Derivative Formula: \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\],\[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
3. Integral Formula: \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \]
Complete Step by Step Solution:
We are given that the integral function \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, we will rewrite the integrand in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \cos x - 2\cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\dfrac{{1 + \cos x}}{{\cos x\left( {1 + \cos x} \right)}} - \dfrac{{2\cos x}}{{\cos x\left( {1 + \cos x} \right)}}dx} \]
Now, by cancelling the common terms in the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{1}{{\cos x}} - \dfrac{2}{{\left( {1 + \cos x} \right)}}dx} \]
By using the Trigonometric Identity \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - \dfrac{2}{{2{{\cos }^2}\dfrac{x}{2}}}dx} \]
Now, cancelling out the common terms, we get
\[ \Rightarrow I = \int {\sec x - \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}dx} \]
Using the Trigonometric Identity \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - {{\sec }^2}\dfrac{x}{2}dx} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\sec xdx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying \[\left( {\sec x + \tan x} \right)\] to the numerator and the denominator of the first integral function, we get
\[ \Rightarrow I = \int {\sec x \times \dfrac{{\left( {\sec x + \tan x} \right)}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying the terms, we get
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]……………………………….\[\left( 1 \right)\]
Let us consider \[u = \sec x + \tan x\]
Now, we will differentiate the variable \[u\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\] and \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]. Therefore, we get
\[ \Rightarrow du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] .
Let us consider \[v = \dfrac{x}{2} = \dfrac{1}{2}x\]
Now, we will differentiate the variable \[v\] by using the derivative formula \[\dfrac{d}{{dx}}\left( x \right) = 1\], so we get
\[\begin{array}{l} \Rightarrow dv = \dfrac{1}{2}dx\\ \Rightarrow dx = 2dv\end{array}\]
Substituting \[dx = 2dv\] and \[du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] in equation \[\left( 1 \right)\], we get
\[I = \int {\dfrac{1}{u}du - 2\int {{{\sec }^2}vdv} } \]
Now, by using Integral formula \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \] , we will integrate the function.
\[ \Rightarrow I = \ln \left( u \right) - 2\tan v + c\]
By substituting the variables \[u\] and \[v\] , we get
\[ \Rightarrow I = \ln \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
\[ \Rightarrow I = \log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
Therefore, the value of \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \] is \[\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\].
Thus, option(A) is the correct answer.
Note:
We know that Integration is the process of adding the small parts to find the whole parts. We need to keep in mind that whenever we are using the method of substitution in integration, the variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Formula Used:
We will use the following formula:
1. Trigonometric Identity: \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and\[\dfrac{1}{{\cos x}} = \sec x\]
2. Derivative Formula: \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\],\[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
3. Integral Formula: \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \]
Complete Step by Step Solution:
We are given that the integral function \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Let the given integral function be \[I\].
\[I = \int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, we will rewrite the integrand in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 + \cos x - 2\cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\dfrac{{1 + \cos x}}{{\cos x\left( {1 + \cos x} \right)}} - \dfrac{{2\cos x}}{{\cos x\left( {1 + \cos x} \right)}}dx} \]
Now, by cancelling the common terms in the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{1}{{\cos x}} - \dfrac{2}{{\left( {1 + \cos x} \right)}}dx} \]
By using the Trigonometric Identity \[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\] and \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - \dfrac{2}{{2{{\cos }^2}\dfrac{x}{2}}}dx} \]
Now, cancelling out the common terms, we get
\[ \Rightarrow I = \int {\sec x - \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}dx} \]
Using the Trigonometric Identity \[\dfrac{1}{{\cos x}} = \sec x\], we get
\[ \Rightarrow I = \int {\sec x - {{\sec }^2}\dfrac{x}{2}dx} \]
Now, by segregating the Integrand, we get
\[ \Rightarrow I = \int {\sec xdx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying \[\left( {\sec x + \tan x} \right)\] to the numerator and the denominator of the first integral function, we get
\[ \Rightarrow I = \int {\sec x \times \dfrac{{\left( {\sec x + \tan x} \right)}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]
Now, by multiplying the terms, we get
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\left( {\sec x + \tan x} \right)}}dx - \int {{{\sec }^2}\dfrac{x}{2}dx} } \]……………………………….\[\left( 1 \right)\]
Let us consider \[u = \sec x + \tan x\]
Now, we will differentiate the variable \[u\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\] and \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]. Therefore, we get
\[ \Rightarrow du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] .
Let us consider \[v = \dfrac{x}{2} = \dfrac{1}{2}x\]
Now, we will differentiate the variable \[v\] by using the derivative formula \[\dfrac{d}{{dx}}\left( x \right) = 1\], so we get
\[\begin{array}{l} \Rightarrow dv = \dfrac{1}{2}dx\\ \Rightarrow dx = 2dv\end{array}\]
Substituting \[dx = 2dv\] and \[du = \left( {\sec x\tan x + {{\sec }^2}x} \right)dx\] in equation \[\left( 1 \right)\], we get
\[I = \int {\dfrac{1}{u}du - 2\int {{{\sec }^2}vdv} } \]
Now, by using Integral formula \[\int {\dfrac{1}{u}} du = \ln \left( u \right)\] and\[\int {{{\sec }^2}vdv = \tan v} \] , we will integrate the function.
\[ \Rightarrow I = \ln \left( u \right) - 2\tan v + c\]
By substituting the variables \[u\] and \[v\] , we get
\[ \Rightarrow I = \ln \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
\[ \Rightarrow I = \log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\]
Therefore, the value of \[\int {\dfrac{{\left( {1 - \cos x} \right)dx}}{{\cos x\left( {1 + \cos x} \right)}}} \] is \[\log \left( {\sec x + \tan x} \right) - 2\tan \dfrac{x}{2} + c\].
Thus, option(A) is the correct answer.
Note:
We know that Integration is the process of adding the small parts to find the whole parts. We need to keep in mind that whenever we are using the method of substitution in integration, the variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral. Whenever the integration is done with no limits, then an Arbitrary constant should be added.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE