
Evaluate $\int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $ ?
Answer
552.9k+ views
Hint: First of all, we will add and subtract a number in the numerator, so that they get separated. After that, we will let the denominator as any variable (say t) and will convert dx into dt. Then after solving further we will re-put the values that we have left.
Complete Step by Step Solution:
Let us consider $\int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $ as y
$ \Rightarrow y = \int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $
Now, we will add and subtract 1 in the numerator
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1 - 1}}{{{e^x} + 1}}dx} $
Now, we will separate it into two parts (first one will be the $\int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} $ and the other one is $\int {\dfrac{{ - 1}}{{{e^x} + 1}}dx} $ )
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx + \int {\dfrac{{ - 1}}{{{e^x} + 1}}} } dx$
We can also write it as
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $
$ \Rightarrow y = \int {1dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $
As we know that $\int {1dx = x} $
Therefore, $ \Rightarrow y = x - \int {\dfrac{1}{{{e^x} + 1}}dx} $
Let us consider $ - \int {\dfrac{1}{{{e^x} + 1}}dx} $ as I
$ \Rightarrow y = x + I$
And $I = - \int {\dfrac{1}{{{e^x} + 1}}dx} $ ……(i)
Let ${e^x} + 1 = t$ ……(ii)
Differentiating both sides of the above equation with respect to t
$ \Rightarrow \dfrac{{d\left( {{e^x}} \right)}}{{dt}} + \dfrac{{d\left( 1 \right)}}{{dt}} = \dfrac{{d\left( t \right)}}{{dt}}$
On further simplification,
$ \Rightarrow {e^x}\left( {\dfrac{{dx}}{{dt}}} \right) + 0 = 1$
$ \Rightarrow {e^x}\left( {dx} \right) = dt$
$ \Rightarrow dx = \dfrac{{dt}}{{{e^x}}}$ ……(iii)
Now, by putting the value of dx and ${e^x} + 1$ from (ii) and (iii) in (i), we get
$ \Rightarrow I = - \int {\dfrac{1}{{t(t - 1)}}dt} $
Now, adding and subtracting t in the numerator
$ \Rightarrow I = - \int {\dfrac{{1 + t - t}}{{t(t - 1)}}dt} $
We can rewrite the above equation as
$ \Rightarrow I = - \int {\dfrac{{t - \left( {t - 1} \right)}}{{t(t - 1)}}dt} $
Now, we will separate the above equation into two parts (first one will be the $ - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt} $ and the other one is $ - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} $ )
$ \Rightarrow I = - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} } $
$ \Rightarrow I = - \int {\dfrac{1}{{t - 1}}dt - \int {\dfrac{{ - 1}}{t}dt} } $
As we know that $\int {\dfrac{1}{x}dx = \ln \left( x \right)} $
Hence $I = - \ln \left( {t - 1} \right) + \ln \left( t \right)$
Now, putting the value of t from (ii)
$ \Rightarrow I = - \ln \left( {{e^x} + 1 - 1} \right) + \ln \left( {{e^x} + 1} \right)$
We can also rewrite the above equation as
$ \Rightarrow I = \ln \left( {{e^x} + 1} \right) - \ln \left( {{e^x}} \right)$
As $y = x + I$
As we know $\ln \left( {{e^x}} \right) = x$
Therefore, $y = x + \ln ({e^x} + 1) - x$
$ \Rightarrow y = \ln ({e^x} + 1)$
Note:
While doing these types of problems, strictly take care of dx and dt. When you let a variable (say x) to another variable (say t) then take care that you do not forget to change the dx into dt. And in the last, do not forget to put the given variables. Do not leave the answer in those variables which you have taken (let).
Complete Step by Step Solution:
Let us consider $\int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $ as y
$ \Rightarrow y = \int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $
Now, we will add and subtract 1 in the numerator
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1 - 1}}{{{e^x} + 1}}dx} $
Now, we will separate it into two parts (first one will be the $\int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} $ and the other one is $\int {\dfrac{{ - 1}}{{{e^x} + 1}}dx} $ )
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx + \int {\dfrac{{ - 1}}{{{e^x} + 1}}} } dx$
We can also write it as
$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $
$ \Rightarrow y = \int {1dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $
As we know that $\int {1dx = x} $
Therefore, $ \Rightarrow y = x - \int {\dfrac{1}{{{e^x} + 1}}dx} $
Let us consider $ - \int {\dfrac{1}{{{e^x} + 1}}dx} $ as I
$ \Rightarrow y = x + I$
And $I = - \int {\dfrac{1}{{{e^x} + 1}}dx} $ ……(i)
Let ${e^x} + 1 = t$ ……(ii)
Differentiating both sides of the above equation with respect to t
$ \Rightarrow \dfrac{{d\left( {{e^x}} \right)}}{{dt}} + \dfrac{{d\left( 1 \right)}}{{dt}} = \dfrac{{d\left( t \right)}}{{dt}}$
On further simplification,
$ \Rightarrow {e^x}\left( {\dfrac{{dx}}{{dt}}} \right) + 0 = 1$
$ \Rightarrow {e^x}\left( {dx} \right) = dt$
$ \Rightarrow dx = \dfrac{{dt}}{{{e^x}}}$ ……(iii)
Now, by putting the value of dx and ${e^x} + 1$ from (ii) and (iii) in (i), we get
$ \Rightarrow I = - \int {\dfrac{1}{{t(t - 1)}}dt} $
Now, adding and subtracting t in the numerator
$ \Rightarrow I = - \int {\dfrac{{1 + t - t}}{{t(t - 1)}}dt} $
We can rewrite the above equation as
$ \Rightarrow I = - \int {\dfrac{{t - \left( {t - 1} \right)}}{{t(t - 1)}}dt} $
Now, we will separate the above equation into two parts (first one will be the $ - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt} $ and the other one is $ - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} $ )
$ \Rightarrow I = - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} } $
$ \Rightarrow I = - \int {\dfrac{1}{{t - 1}}dt - \int {\dfrac{{ - 1}}{t}dt} } $
As we know that $\int {\dfrac{1}{x}dx = \ln \left( x \right)} $
Hence $I = - \ln \left( {t - 1} \right) + \ln \left( t \right)$
Now, putting the value of t from (ii)
$ \Rightarrow I = - \ln \left( {{e^x} + 1 - 1} \right) + \ln \left( {{e^x} + 1} \right)$
We can also rewrite the above equation as
$ \Rightarrow I = \ln \left( {{e^x} + 1} \right) - \ln \left( {{e^x}} \right)$
As $y = x + I$
As we know $\ln \left( {{e^x}} \right) = x$
Therefore, $y = x + \ln ({e^x} + 1) - x$
$ \Rightarrow y = \ln ({e^x} + 1)$
Note:
While doing these types of problems, strictly take care of dx and dt. When you let a variable (say x) to another variable (say t) then take care that you do not forget to change the dx into dt. And in the last, do not forget to put the given variables. Do not leave the answer in those variables which you have taken (let).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

