Answer

Verified

388.2k+ views

**Hint:**First of all, we will add and subtract a number in the numerator, so that they get separated. After that, we will let the denominator as any variable (say t) and will convert dx into dt. Then after solving further we will re-put the values that we have left.

**Complete Step by Step Solution:**

Let us consider $\int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $ as y

$ \Rightarrow y = \int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $

Now, we will add and subtract 1 in the numerator

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1 - 1}}{{{e^x} + 1}}dx} $

Now, we will separate it into two parts (first one will be the $\int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} $ and the other one is $\int {\dfrac{{ - 1}}{{{e^x} + 1}}dx} $ )

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx + \int {\dfrac{{ - 1}}{{{e^x} + 1}}} } dx$

We can also write it as

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $

$ \Rightarrow y = \int {1dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $

As we know that $\int {1dx = x} $

Therefore, $ \Rightarrow y = x - \int {\dfrac{1}{{{e^x} + 1}}dx} $

Let us consider $ - \int {\dfrac{1}{{{e^x} + 1}}dx} $ as I

$ \Rightarrow y = x + I$

And $I = - \int {\dfrac{1}{{{e^x} + 1}}dx} $ ……(i)

Let ${e^x} + 1 = t$ ……(ii)

Differentiating both sides of the above equation with respect to t

$ \Rightarrow \dfrac{{d\left( {{e^x}} \right)}}{{dt}} + \dfrac{{d\left( 1 \right)}}{{dt}} = \dfrac{{d\left( t \right)}}{{dt}}$

On further simplification,

$ \Rightarrow {e^x}\left( {\dfrac{{dx}}{{dt}}} \right) + 0 = 1$

$ \Rightarrow {e^x}\left( {dx} \right) = dt$

$ \Rightarrow dx = \dfrac{{dt}}{{{e^x}}}$ ……(iii)

Now, by putting the value of dx and ${e^x} + 1$ from (ii) and (iii) in (i), we get

$ \Rightarrow I = - \int {\dfrac{1}{{t(t - 1)}}dt} $

Now, adding and subtracting t in the numerator

$ \Rightarrow I = - \int {\dfrac{{1 + t - t}}{{t(t - 1)}}dt} $

We can rewrite the above equation as

$ \Rightarrow I = - \int {\dfrac{{t - \left( {t - 1} \right)}}{{t(t - 1)}}dt} $

Now, we will separate the above equation into two parts (first one will be the $ - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt} $ and the other one is $ - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} $ )

$ \Rightarrow I = - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} } $

$ \Rightarrow I = - \int {\dfrac{1}{{t - 1}}dt - \int {\dfrac{{ - 1}}{t}dt} } $

As we know that $\int {\dfrac{1}{x}dx = \ln \left( x \right)} $

Hence $I = - \ln \left( {t - 1} \right) + \ln \left( t \right)$

Now, putting the value of t from (ii)

$ \Rightarrow I = - \ln \left( {{e^x} + 1 - 1} \right) + \ln \left( {{e^x} + 1} \right)$

We can also rewrite the above equation as

$ \Rightarrow I = \ln \left( {{e^x} + 1} \right) - \ln \left( {{e^x}} \right)$

As $y = x + I$

As we know $\ln \left( {{e^x}} \right) = x$

**Therefore, $y = x + \ln ({e^x} + 1) - x$**

$ \Rightarrow y = \ln ({e^x} + 1)$

$ \Rightarrow y = \ln ({e^x} + 1)$

**Note:**

While doing these types of problems, strictly take care of dx and dt. When you let a variable (say x) to another variable (say t) then take care that you do not forget to change the dx into dt. And in the last, do not forget to put the given variables. Do not leave the answer in those variables which you have taken (let).

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE