Answer

Verified

338.4k+ views

**Hint:**First of all, we will add and subtract a number in the numerator, so that they get separated. After that, we will let the denominator as any variable (say t) and will convert dx into dt. Then after solving further we will re-put the values that we have left.

**Complete Step by Step Solution:**

Let us consider $\int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $ as y

$ \Rightarrow y = \int {\dfrac{{{e^x}}}{{{e^x} + 1}}dx} $

Now, we will add and subtract 1 in the numerator

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1 - 1}}{{{e^x} + 1}}dx} $

Now, we will separate it into two parts (first one will be the $\int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} $ and the other one is $\int {\dfrac{{ - 1}}{{{e^x} + 1}}dx} $ )

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx + \int {\dfrac{{ - 1}}{{{e^x} + 1}}} } dx$

We can also write it as

$ \Rightarrow y = \int {\dfrac{{{e^x} + 1}}{{{e^x} + 1}}dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $

$ \Rightarrow y = \int {1dx} - \int {\dfrac{1}{{{e^x} + 1}}dx} $

As we know that $\int {1dx = x} $

Therefore, $ \Rightarrow y = x - \int {\dfrac{1}{{{e^x} + 1}}dx} $

Let us consider $ - \int {\dfrac{1}{{{e^x} + 1}}dx} $ as I

$ \Rightarrow y = x + I$

And $I = - \int {\dfrac{1}{{{e^x} + 1}}dx} $ ……(i)

Let ${e^x} + 1 = t$ ……(ii)

Differentiating both sides of the above equation with respect to t

$ \Rightarrow \dfrac{{d\left( {{e^x}} \right)}}{{dt}} + \dfrac{{d\left( 1 \right)}}{{dt}} = \dfrac{{d\left( t \right)}}{{dt}}$

On further simplification,

$ \Rightarrow {e^x}\left( {\dfrac{{dx}}{{dt}}} \right) + 0 = 1$

$ \Rightarrow {e^x}\left( {dx} \right) = dt$

$ \Rightarrow dx = \dfrac{{dt}}{{{e^x}}}$ ……(iii)

Now, by putting the value of dx and ${e^x} + 1$ from (ii) and (iii) in (i), we get

$ \Rightarrow I = - \int {\dfrac{1}{{t(t - 1)}}dt} $

Now, adding and subtracting t in the numerator

$ \Rightarrow I = - \int {\dfrac{{1 + t - t}}{{t(t - 1)}}dt} $

We can rewrite the above equation as

$ \Rightarrow I = - \int {\dfrac{{t - \left( {t - 1} \right)}}{{t(t - 1)}}dt} $

Now, we will separate the above equation into two parts (first one will be the $ - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt} $ and the other one is $ - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} $ )

$ \Rightarrow I = - \int {\dfrac{t}{{t\left( {t - 1} \right)}}dt - \int {\dfrac{{ - \left( {t - 1} \right)}}{{t\left( {t - 1} \right)}}dt} } $

$ \Rightarrow I = - \int {\dfrac{1}{{t - 1}}dt - \int {\dfrac{{ - 1}}{t}dt} } $

As we know that $\int {\dfrac{1}{x}dx = \ln \left( x \right)} $

Hence $I = - \ln \left( {t - 1} \right) + \ln \left( t \right)$

Now, putting the value of t from (ii)

$ \Rightarrow I = - \ln \left( {{e^x} + 1 - 1} \right) + \ln \left( {{e^x} + 1} \right)$

We can also rewrite the above equation as

$ \Rightarrow I = \ln \left( {{e^x} + 1} \right) - \ln \left( {{e^x}} \right)$

As $y = x + I$

As we know $\ln \left( {{e^x}} \right) = x$

**Therefore, $y = x + \ln ({e^x} + 1) - x$**

$ \Rightarrow y = \ln ({e^x} + 1)$

$ \Rightarrow y = \ln ({e^x} + 1)$

**Note:**

While doing these types of problems, strictly take care of dx and dt. When you let a variable (say x) to another variable (say t) then take care that you do not forget to change the dx into dt. And in the last, do not forget to put the given variables. Do not leave the answer in those variables which you have taken (let).

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Basicity of sulphurous acid and sulphuric acid are

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Which places in India experience sunrise first and class 9 social science CBSE

The list which includes subjects of national importance class 10 social science CBSE

What is pollution? How many types of pollution? Define it

State the laws of reflection of light