
What Euler’s substitutions must be used in integrals of the form: \[\sqrt {a{x^2} + bx + c} \]
$ \pm \sqrt b x,a > 0 $
$ \pm \sqrt {{a^3}} x,a > 0 $
$ \pm \sqrt a x,a > 0 $
None of These
Answer
573.6k+ views
Hint: In this question, we need to determine the Euler’s substitution that must be used in evaluating the integrals of the type \[\sqrt {a{x^2} + bx + c} \]. Use all the options in Euler’s substitutions methods to get the desired results and check which of the options is best suitable.
Formula Used: As such there is no formula used. Just to get rid of the square root and quadratic equation, we use Euler’s substitutions methods.
Complete step-by-step answer:
For option A: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt b + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}b + {t^2} + 2x\sqrt b \]
\[a{x^2} - {x^2}b + bx - 2x\sqrt b = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {ax - xb + b - 2\sqrt b } \right) = {t^2} - c\]
Hence we cannot solve further as we have to solve x in terms of constants which is not possible.
For option B: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt {{a^3}} + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}{a^3} + {t^2} + 2x\sqrt {{a^3}} \]
\[a{x^2} - {x^2}{a^3} + bx - 2x\sqrt {{a^3}} = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {ax - x{a^3} + b - 2\sqrt {{a^3}} } \right) = {t^2} - c\]
Hence we cannot solve further as we have to solve x in terms of constants which is not possible.
For option C: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt a + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}a + {t^2} + 2x\sqrt a \]
Cancelling $ a{x^2} $ on both sides,
We get, \[bx + c = {t^2} + 2x\sqrt a \]
\[bx - 2x\sqrt a = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {b - 2\sqrt a } \right) = {t^2} - c\]
So, $ x $ comes out to be: \[x = \dfrac{{{t^2} - c}}{{b - 2\sqrt a }}\]
Hence, we calculate x in terms of constants for $ a > 0 $ .
So, option C is correct, that is $ \pm \sqrt a x,a > 0 $ .
So, the correct answer is “Option C”.
Note: Here we use Euler’s substitutions to check whether x comes out to be in constants for $ a > 0 $ .As to get rid of the square roots and quadratic equation. So, we verified all the options to get the desired results. We have three Euler’s substitutions for different values of $ \left( {a,b,c} \right) $ . First we assume $ a > 0 $ , for second we assume $ b \ne 0 $ and third we assume $ c > 0 $ .
Formula Used: As such there is no formula used. Just to get rid of the square root and quadratic equation, we use Euler’s substitutions methods.
Complete step-by-step answer:
For option A: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt b + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}b + {t^2} + 2x\sqrt b \]
\[a{x^2} - {x^2}b + bx - 2x\sqrt b = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {ax - xb + b - 2\sqrt b } \right) = {t^2} - c\]
Hence we cannot solve further as we have to solve x in terms of constants which is not possible.
For option B: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt {{a^3}} + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}{a^3} + {t^2} + 2x\sqrt {{a^3}} \]
\[a{x^2} - {x^2}{a^3} + bx - 2x\sqrt {{a^3}} = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {ax - x{a^3} + b - 2\sqrt {{a^3}} } \right) = {t^2} - c\]
Hence we cannot solve further as we have to solve x in terms of constants which is not possible.
For option C: Our assumption is $ a > 0 $ .
Substitute: \[\sqrt {a{x^2} + bx + c} = x\sqrt a + t\]
Squaring both sides,
We get, \[a{x^2} + bx + c = {x^2}a + {t^2} + 2x\sqrt a \]
Cancelling $ a{x^2} $ on both sides,
We get, \[bx + c = {t^2} + 2x\sqrt a \]
\[bx - 2x\sqrt a = {t^2} - c\]
On taking out x common from left hand side,
We get, \[x\left( {b - 2\sqrt a } \right) = {t^2} - c\]
So, $ x $ comes out to be: \[x = \dfrac{{{t^2} - c}}{{b - 2\sqrt a }}\]
Hence, we calculate x in terms of constants for $ a > 0 $ .
So, option C is correct, that is $ \pm \sqrt a x,a > 0 $ .
So, the correct answer is “Option C”.
Note: Here we use Euler’s substitutions to check whether x comes out to be in constants for $ a > 0 $ .As to get rid of the square roots and quadratic equation. So, we verified all the options to get the desired results. We have three Euler’s substitutions for different values of $ \left( {a,b,c} \right) $ . First we assume $ a > 0 $ , for second we assume $ b \ne 0 $ and third we assume $ c > 0 $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

