Answer
Verified
398.4k+ views
Hint: Here, we will draw the R region of Integration only by using the limits of Integration and not by evaluating the Integral. Then by using the R region of Integration, we will find the order of integration after reversing. Integration is defined as the summation of all the discrete data.
Complete Step by Step Solution:
We are given an Integral function \[\int_0^1 {\int_{ - \sqrt {1 - {y^2}} }^{\sqrt {1 - {y^2}} } {dxdy} } \].
The given Integration limit shows that the region is a unit circle, which gives the underlying relationships as:
\[{x^2} + {y^2} = 1\]
Now, the limits of the Integration of the variables \[x\] and \[y\] are
\[ \Rightarrow x = \pm \sqrt {1 - {y^2}} \] and \[y = \pm \sqrt {1 - {x^2}} \]
But, the given limits of the Integration are:
\[ - \sqrt {1 - {y^2}} \le x \le \sqrt {1 - {y^2}} \] and \[0 \le y \le 1\]
We will draw the R Region of Integration for the given limits in the first Quadrant \[{Q_1}\] and the second Quadrant \[{Q_2}\].
Now, we will change the order of Integration.
\[ - 1 \le x \le 1\] and \[0 \le y \le \sqrt {1 - {x^2}} \]
Thus, we will get the Integration after reversing the order of integration as \[\int_{ - 1}^1 {\int_0^{\sqrt {1 - {x^2}} } {dydx} } \].
Therefore, the Integration after reversing the order of integration is \[\int_0^1 {\int_{ - \sqrt {1 - {y^2}} }^{\sqrt {1 - {y^2}} } {dxdy} } = \int_{ - 1}^1 {\int_0^{\sqrt {1 - {x^2}} } {dydx} } \].
Note:
We know that R region is a region that is common for the given functions and lies in the quadrants. The order of Integration is a process of reversing the order from \[dxdy\] to\[dydx\]. \[\int_a^b {f\left( x \right)dx} \] where \[a\] is the lower limit of the Integral and \[b\] is the upper limit of the Integral. We know that Integration is the process of adding the small parts to find the whole parts. Double Integration is defined as the process of Integration over a two Dimensional area.
Complete Step by Step Solution:
We are given an Integral function \[\int_0^1 {\int_{ - \sqrt {1 - {y^2}} }^{\sqrt {1 - {y^2}} } {dxdy} } \].
The given Integration limit shows that the region is a unit circle, which gives the underlying relationships as:
\[{x^2} + {y^2} = 1\]
Now, the limits of the Integration of the variables \[x\] and \[y\] are
\[ \Rightarrow x = \pm \sqrt {1 - {y^2}} \] and \[y = \pm \sqrt {1 - {x^2}} \]
But, the given limits of the Integration are:
\[ - \sqrt {1 - {y^2}} \le x \le \sqrt {1 - {y^2}} \] and \[0 \le y \le 1\]
We will draw the R Region of Integration for the given limits in the first Quadrant \[{Q_1}\] and the second Quadrant \[{Q_2}\].
Now, we will change the order of Integration.
\[ - 1 \le x \le 1\] and \[0 \le y \le \sqrt {1 - {x^2}} \]
Thus, we will get the Integration after reversing the order of integration as \[\int_{ - 1}^1 {\int_0^{\sqrt {1 - {x^2}} } {dydx} } \].
Therefore, the Integration after reversing the order of integration is \[\int_0^1 {\int_{ - \sqrt {1 - {y^2}} }^{\sqrt {1 - {y^2}} } {dxdy} } = \int_{ - 1}^1 {\int_0^{\sqrt {1 - {x^2}} } {dydx} } \].
Note:
We know that R region is a region that is common for the given functions and lies in the quadrants. The order of Integration is a process of reversing the order from \[dxdy\] to\[dydx\]. \[\int_a^b {f\left( x \right)dx} \] where \[a\] is the lower limit of the Integral and \[b\] is the upper limit of the Integral. We know that Integration is the process of adding the small parts to find the whole parts. Double Integration is defined as the process of Integration over a two Dimensional area.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE