
Draw a rough sketch of the graph of the function $y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right]$ and evaluate the area enclosed between the curve and the x-axis.
Answer
583.2k+ views
Hint: To solve this question, we will use the concept of application of integration. If the curve $y = f\left( x \right)$ lies above the x-axis on interval $\left[ {a,b} \right]$, then the area bounded by the curve $y = f\left( x \right)$, x-axis and the ordinates x = a and x = b is given by,
\[\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = \int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b y dx\] $\left[ {\therefore f\left( x \right) \geqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = f\left( x \right)} \right]$
Complete step-by-step answer:
Given that,
$y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right]$
Let us simplify this equation of curve in a simple form,
$ \Rightarrow y = 2\sqrt {1 - {x^2}} $ ……. (i)
Squaring both sides on equation (i),
$ \Rightarrow {y^2} = 4\left( {1 - {x^2}} \right)$
\[ \Rightarrow \dfrac{{{y^2}}}{4} = 1 - {x^2}\]
\[ \Rightarrow \dfrac{{{x^2}}}{1} + \dfrac{{{y^2}}}{4} = 1\]
Here, we can see that this is the equation of an ellipse.
So,
$ \Rightarrow y = 2\sqrt {1 - {x^2}} $ will represent the portion of the ellipse lying in the first quadrant.
So, the required area A enclosed between the curve and the x-axis is given by,
\[ \Rightarrow A = \int\limits_0^1 y dx\]
Putting the value of y,
\[ \Rightarrow A = \int\limits_0^1 {2\sqrt {1 - {x^2}} } dx\] ……… (ii)
As we know that,
\[\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C\]
If we compare $\sqrt {{a^2} - {x^2}} $ with \[\sqrt {1 - {x^2}} \],
We get a = 1.
So, the integration of equation (ii) will become,
\[ \Rightarrow A = 2\left[ {\dfrac{1}{2}x\sqrt {1 - {x^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{x}{1}} \right]_0^1\]
\[ \Rightarrow A = 2\left[ {\left( {\dfrac{1}{2}\left( 1 \right)\sqrt {1 - {1^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{1}{1}} \right) - \left( {\dfrac{1}{2}0\sqrt {1 - {0^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{0}{1}} \right)} \right]\]
\[ \Rightarrow A = 2\left[ {\left( {0 + \dfrac{1}{2}\left( {\dfrac{\pi }{2}} \right)} \right) - 0} \right]\]
\[ \Rightarrow A = 2 \times \dfrac{\pi }{4}\]
\[ \Rightarrow A = \dfrac{\pi }{2}\]sq. units.
Hence, the area enclosed between the curve and the x-axis will be \[\dfrac{\pi }{2}\] sq. units.
Note: Whenever we asked such type of questions, we should also remember that, If the curve $y = f\left( x \right)$ lies below the x-axis on interval $\left[ {a,b} \right]$, then the area bounded by the curve $y = f\left( x \right)$, x-axis and the ordinates x = a and x = b is given by,
\[\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = - \int\limits_a^b {f\left( x \right)} dx = - \int\limits_a^b y dx\] $\left[ {\therefore f\left( x \right) \leqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = - f\left( x \right)} \right]$
\[\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = \int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b y dx\] $\left[ {\therefore f\left( x \right) \geqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = f\left( x \right)} \right]$
Complete step-by-step answer:
Given that,
$y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right]$
Let us simplify this equation of curve in a simple form,
$ \Rightarrow y = 2\sqrt {1 - {x^2}} $ ……. (i)
Squaring both sides on equation (i),
$ \Rightarrow {y^2} = 4\left( {1 - {x^2}} \right)$
\[ \Rightarrow \dfrac{{{y^2}}}{4} = 1 - {x^2}\]
\[ \Rightarrow \dfrac{{{x^2}}}{1} + \dfrac{{{y^2}}}{4} = 1\]
Here, we can see that this is the equation of an ellipse.
So,
$ \Rightarrow y = 2\sqrt {1 - {x^2}} $ will represent the portion of the ellipse lying in the first quadrant.
So, the required area A enclosed between the curve and the x-axis is given by,
\[ \Rightarrow A = \int\limits_0^1 y dx\]
Putting the value of y,
\[ \Rightarrow A = \int\limits_0^1 {2\sqrt {1 - {x^2}} } dx\] ……… (ii)
As we know that,
\[\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C\]
If we compare $\sqrt {{a^2} - {x^2}} $ with \[\sqrt {1 - {x^2}} \],
We get a = 1.
So, the integration of equation (ii) will become,
\[ \Rightarrow A = 2\left[ {\dfrac{1}{2}x\sqrt {1 - {x^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{x}{1}} \right]_0^1\]
\[ \Rightarrow A = 2\left[ {\left( {\dfrac{1}{2}\left( 1 \right)\sqrt {1 - {1^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{1}{1}} \right) - \left( {\dfrac{1}{2}0\sqrt {1 - {0^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{0}{1}} \right)} \right]\]
\[ \Rightarrow A = 2\left[ {\left( {0 + \dfrac{1}{2}\left( {\dfrac{\pi }{2}} \right)} \right) - 0} \right]\]
\[ \Rightarrow A = 2 \times \dfrac{\pi }{4}\]
\[ \Rightarrow A = \dfrac{\pi }{2}\]sq. units.
Hence, the area enclosed between the curve and the x-axis will be \[\dfrac{\pi }{2}\] sq. units.
Note: Whenever we asked such type of questions, we should also remember that, If the curve $y = f\left( x \right)$ lies below the x-axis on interval $\left[ {a,b} \right]$, then the area bounded by the curve $y = f\left( x \right)$, x-axis and the ordinates x = a and x = b is given by,
\[\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = - \int\limits_a^b {f\left( x \right)} dx = - \int\limits_a^b y dx\] $\left[ {\therefore f\left( x \right) \leqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = - f\left( x \right)} \right]$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

