Answer
Verified
465k+ views
Hint:Try to solve the problem from the outermost function, i.e. inverse sine function. Use the domain of inverse sine function to form an inequality. Now further solve this inequality with the use of the definition of the logarithmic function.
Complete step-by-step answer:
Let’s first try to understand the question properly. Here we are given with a composite function which is a combination of Sine inverse function, logarithmic function and polynomial function. And we have to find the domain of the function$f\left( x \right)$.
For that, we need to know the definition of the domain of the function. The domain of a function is the set of all possible inputs for the function. So, for a function $g\left( x \right)$, the set of all the possible values of $'x'$ will be the function’s domain.
The best way to solve this problem is to go from outside to inside.
The domain of inverse sine function is $\left[ { - 1,1} \right]$, that means whatever is inside the scope of ${\sin ^{ - 1}}()$ must attain a value in the closed interval $\left[ { - 1,1} \right]$.
$ \Rightarrow {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \in \left[ { - 1,1} \right] \Rightarrow - 1 \leqslant {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \text{and}\, {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \leqslant 1 \Rightarrow - 1 \leqslant {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \leqslant 1$
The above inequality is just showing that the insides of the inverse sine function should be greater than equal to $ - 1$ and smaller than equal to$1$ .
But we know that by the definition of the logarithmic function: ${\log _a}b = y \Rightarrow {a^y} = b$ and the domain of the logarithmic function is positive integers which also satisfy the conditions here.
So, we can write that: ${2^{ - 1}} \leqslant \dfrac{{{x^2}}}{2} \text{and}\, \dfrac{{{x^2}}}{2} \leqslant {2^1} \Rightarrow {2^{ - 1}} \leqslant \dfrac{{{x^2}}}{2} \leqslant {2^1}$
We can carefully evaluate the above inequality
$ \Rightarrow \dfrac{1}{2} \leqslant \dfrac{{{x^2}}}{2} \leqslant 2 \Rightarrow \dfrac{1}{2} \times 2 \leqslant {x^2} \leqslant 2 \times 2 \Rightarrow 1 \leqslant {x^2} \leqslant 4$
Now, for ${x^2} = 1 \Rightarrow x = \pm 1$ and for ${x^2} = 4 \Rightarrow x = \pm 2$
The above inequality can be represented as: $1 \leqslant {x^2} \leqslant 4 \Rightarrow - 1 \leqslant x \leqslant - 2$ and $1 \leqslant x \leqslant 2$
Therefore, for the function, $f\left( x \right)$ we have $x \in \left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$ as its domain.
So, the correct answer is “Option C”.
Note:Be careful with the signs while transformations in the inequality. The interval closed using square braces $'\left[ {\,} \right]'$ symbolizes for both sides of the closed interval it means starting and end of the values are also included.Students should remember domain and range of all trigonometric and inverse trigonometric functions for solving these types of problems.
Complete step-by-step answer:
Let’s first try to understand the question properly. Here we are given with a composite function which is a combination of Sine inverse function, logarithmic function and polynomial function. And we have to find the domain of the function$f\left( x \right)$.
For that, we need to know the definition of the domain of the function. The domain of a function is the set of all possible inputs for the function. So, for a function $g\left( x \right)$, the set of all the possible values of $'x'$ will be the function’s domain.
The best way to solve this problem is to go from outside to inside.
The domain of inverse sine function is $\left[ { - 1,1} \right]$, that means whatever is inside the scope of ${\sin ^{ - 1}}()$ must attain a value in the closed interval $\left[ { - 1,1} \right]$.
$ \Rightarrow {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \in \left[ { - 1,1} \right] \Rightarrow - 1 \leqslant {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \text{and}\, {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \leqslant 1 \Rightarrow - 1 \leqslant {\log _2}\left( {\dfrac{{{x^2}}}{2}} \right) \leqslant 1$
The above inequality is just showing that the insides of the inverse sine function should be greater than equal to $ - 1$ and smaller than equal to$1$ .
But we know that by the definition of the logarithmic function: ${\log _a}b = y \Rightarrow {a^y} = b$ and the domain of the logarithmic function is positive integers which also satisfy the conditions here.
So, we can write that: ${2^{ - 1}} \leqslant \dfrac{{{x^2}}}{2} \text{and}\, \dfrac{{{x^2}}}{2} \leqslant {2^1} \Rightarrow {2^{ - 1}} \leqslant \dfrac{{{x^2}}}{2} \leqslant {2^1}$
We can carefully evaluate the above inequality
$ \Rightarrow \dfrac{1}{2} \leqslant \dfrac{{{x^2}}}{2} \leqslant 2 \Rightarrow \dfrac{1}{2} \times 2 \leqslant {x^2} \leqslant 2 \times 2 \Rightarrow 1 \leqslant {x^2} \leqslant 4$
Now, for ${x^2} = 1 \Rightarrow x = \pm 1$ and for ${x^2} = 4 \Rightarrow x = \pm 2$
The above inequality can be represented as: $1 \leqslant {x^2} \leqslant 4 \Rightarrow - 1 \leqslant x \leqslant - 2$ and $1 \leqslant x \leqslant 2$
Therefore, for the function, $f\left( x \right)$ we have $x \in \left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$ as its domain.
So, the correct answer is “Option C”.
Note:Be careful with the signs while transformations in the inequality. The interval closed using square braces $'\left[ {\,} \right]'$ symbolizes for both sides of the closed interval it means starting and end of the values are also included.Students should remember domain and range of all trigonometric and inverse trigonometric functions for solving these types of problems.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE