
How do you differentiate $y={{\left( \sin x \right)}^{\ln x}}?$
Answer
552.9k+ views
Hint: (1) Find the derivative of $'y'$ firstly then find the derivative of ${{\left( \sin x \right)}^{\ln x}}$
(2) Try to shift $\ln x$ exponent and solve it by taking.
Natural $\log $ on both sides using properties of logarithms.
E.g. $\ln {{x}^{a}}=a\ln \left( x \right)$
Complete step by step solution: We know that, $y={{\left( \sin x \right)}^{\ln x}}$
So, here we can first find the derivative of $'y'$ than after that derivative of ${{\left( \sin x \right)}^{\ln x}}$
$y={{\left( \sin x \right)}^{\ln x}}$
Taking $\log $ on both sides by using the property of logarithm,
Therefore,
$\ln y=\ln {{\left( \sin x \right)}^{\ln x}}$
$\ln y=\ln x.\ln \left( \sin x \right)...(i)$
Here ${{\left( \sin x \right)}^{\ln x}}$ converted into $\ln x.\left( \sin x \right)$ by the property of logarithm.
Now,
We will derive both sides, for the left side we will have to derivate of $\ln y=\dfrac{1}{y}$
But we can’t simply say that derivative of $y$ is $1$ (using change rule) Rather we say that it is $\dfrac{dy}{dx}$
So, the left hand side of equation will be.
$\dfrac{1}{y}.\dfrac{dy}{dx}$
Now, taking derivative on right side of the equation $(i)$
Using the product and chain rule we will get,
$\dfrac{1}{y}.\dfrac{dy}{dx}=\left( \ln \left( \sin x \right).\dfrac{1}{2} \right)+\left( \ln x.\dfrac{1}{\sin x}.\cos x \right)$
$\dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x}$
Multiplying above equation on both sides by $'y'$
Therefore,
$\dfrac{1}{y}.y\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Here, $y$ in multiplying and division get canceled.
$\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln \cos x}{\sin x} \right)$
Hence, to get our answer in terms of $'x'$ replace $'y'$ by $\sin {{x}^{\ln x}}$ from the original function.
Our final answer will be
$\dfrac{dy}{dx}=\sin {{\left( x \right)}^{\ln x}}\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Additional Information:
(1) The chain rule tells us how to find the derivative of a composite function.
In this way we can apply chain rule.
$\dfrac{d}{dx}\left[ f(g(x)) \right]=f'\left( g\left( x \right) \right)g'\left( x \right)$
For example: $\cos \left( {{x}^{2}} \right)$
$f(x)=\cos \left( x \right)$ and $g\left( x \right)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
(2) Derivative of $\sin x$ is $\cos x$ but here for the exponent component we have to use the property of logarithm.
Note:
(1) Firstly find the derivative of $'y'$ and then of the ${{\left( \sin x \right)}^{\ln x}}$
(2) Shift $\ln x$ exponent by using the property of logarithm.
(3) Use only product and chain rules.
(4) At last replace $y$ by $\sin {{x}^{\ln x}}$ from the original function.
(2) Try to shift $\ln x$ exponent and solve it by taking.
Natural $\log $ on both sides using properties of logarithms.
E.g. $\ln {{x}^{a}}=a\ln \left( x \right)$
Complete step by step solution: We know that, $y={{\left( \sin x \right)}^{\ln x}}$
So, here we can first find the derivative of $'y'$ than after that derivative of ${{\left( \sin x \right)}^{\ln x}}$
$y={{\left( \sin x \right)}^{\ln x}}$
Taking $\log $ on both sides by using the property of logarithm,
Therefore,
$\ln y=\ln {{\left( \sin x \right)}^{\ln x}}$
$\ln y=\ln x.\ln \left( \sin x \right)...(i)$
Here ${{\left( \sin x \right)}^{\ln x}}$ converted into $\ln x.\left( \sin x \right)$ by the property of logarithm.
Now,
We will derive both sides, for the left side we will have to derivate of $\ln y=\dfrac{1}{y}$
But we can’t simply say that derivative of $y$ is $1$ (using change rule) Rather we say that it is $\dfrac{dy}{dx}$
So, the left hand side of equation will be.
$\dfrac{1}{y}.\dfrac{dy}{dx}$
Now, taking derivative on right side of the equation $(i)$
Using the product and chain rule we will get,
$\dfrac{1}{y}.\dfrac{dy}{dx}=\left( \ln \left( \sin x \right).\dfrac{1}{2} \right)+\left( \ln x.\dfrac{1}{\sin x}.\cos x \right)$
$\dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x}$
Multiplying above equation on both sides by $'y'$
Therefore,
$\dfrac{1}{y}.y\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Here, $y$ in multiplying and division get canceled.
$\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln \cos x}{\sin x} \right)$
Hence, to get our answer in terms of $'x'$ replace $'y'$ by $\sin {{x}^{\ln x}}$ from the original function.
Our final answer will be
$\dfrac{dy}{dx}=\sin {{\left( x \right)}^{\ln x}}\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Additional Information:
(1) The chain rule tells us how to find the derivative of a composite function.
In this way we can apply chain rule.
$\dfrac{d}{dx}\left[ f(g(x)) \right]=f'\left( g\left( x \right) \right)g'\left( x \right)$
For example: $\cos \left( {{x}^{2}} \right)$
$f(x)=\cos \left( x \right)$ and $g\left( x \right)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
(2) Derivative of $\sin x$ is $\cos x$ but here for the exponent component we have to use the property of logarithm.
Note:
(1) Firstly find the derivative of $'y'$ and then of the ${{\left( \sin x \right)}^{\ln x}}$
(2) Shift $\ln x$ exponent by using the property of logarithm.
(3) Use only product and chain rules.
(4) At last replace $y$ by $\sin {{x}^{\ln x}}$ from the original function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

