# Differentiate with respect to $x:\sin \left( m{{\sin }^{-1}}x \right)$

(a) $\cos \left( m{{\cos }^{-1}}x \right)$

(b) $\sin \left( m{{\sin }^{-1}}x \right)$

(c) ${{m}^{2}}\sin x$

(d) none of these

Last updated date: 21st Mar 2023

•

Total views: 307.8k

•

Views today: 6.86k

Answer

Verified

307.8k+ views

Hint: To solve this question, we can use chain rule since we have to differentiate a composite function of the form \[f\left( g\left( x \right) \right)\].

In this question, we have to differentiate $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to

$x$. Before proceeding with the question, we must know the chain rule. If we have to differentiate a function which is the form of \[f\left( g\left( x \right) \right)\], we will use chain rule. We can differentiate a function which is the form of \[f\left( g\left( x \right) \right)\] using chain rule as shown below,

$\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=\dfrac{d\left( f\left( g\left( x \right) \right)

\right)}{d\left( g\left( x \right) \right)}\times \dfrac{d\left( g\left( x \right) \right)}{dx}.............\left( 1

\right)$

In the question, since we are given a function \[f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{-

1}}x \right)\]. So, we can find out $g\left( x \right)=m{{\sin }^{-1}}x$. Substituting \[f\left( g\left( x

\right) \right)=\sin \left( m{{\sin }^{-1}}x \right)\] and $g\left( x \right)=m{{\sin }^{-1}}x$ in equation

$\left( 1 \right)$, we get,

\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x

\right) \right)}{d\left( m{{\sin }^{-1}}x \right)}\times \dfrac{d\left( m{{\sin }^{-1}}x

\right)}{dx}.............\left( 2 \right)\]

Since we are differentiating $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to $m{{\sin }^{-1}}x$, we

get,

\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left(

m{{\sin }^{-1}}x \right)\], $\because \dfrac{d\sin x}{dx}=\cos x$

Also, we have a formula which gives us the derivative of ${{\sin }^{-1}}x$ with respect to $x$,

$\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}..........\left( 4 \right)$

Since $m$is a constant, we can take $m$out of the derivative in $\dfrac{d\left( m{{\sin }^{-1}}x

\right)}{dx}$ and hence, we can write $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ as,

\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=m\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\]

Substituting $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ from equation $\left( 4

\right)$ in the above equation to obtain the derivative of $m{{\sin }^{-1}}x$ with respect to $x$, we

get,

\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}...........\left( 5 \right)\]

Substituting \[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x

\right)}=\cos \left( m{{\sin }^{-1}}x \right)\] from equation $\left( 3 \right)$ and \[\dfrac{d\left(

m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}\] from equation $\left( 5 \right)$ in

equation $\left( 2 \right)$, we get,

\[\begin{align}

& \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\cos \left( m{{\sin }^{-1}}x

\right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}} \\

& \Rightarrow \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{m\cos \left( m{{\sin

}^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\

\end{align}\]

None of the options are matching with the answer that is \[\dfrac{m\cos \left( m{{\sin }^{-1}}x

\right)}{\sqrt{1-{{x}^{2}}}}\].

Therefore the correct answer is option (d).

Note: There is a possibility of committing a mistake while writing the derivative of $\sin x$ or $\cos x$. There is always a confusion in writing the negative sign. One may write the derivative of $\sin x$ as $-\cos x$ instead of $\cos x$. Also, one may write the derivative of $\cos x$ as $\sin x$ instead of $-

\sin x$. So, in order to avoid such mistakes, one must remember them thoroughly.

In this question, we have to differentiate $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to

$x$. Before proceeding with the question, we must know the chain rule. If we have to differentiate a function which is the form of \[f\left( g\left( x \right) \right)\], we will use chain rule. We can differentiate a function which is the form of \[f\left( g\left( x \right) \right)\] using chain rule as shown below,

$\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=\dfrac{d\left( f\left( g\left( x \right) \right)

\right)}{d\left( g\left( x \right) \right)}\times \dfrac{d\left( g\left( x \right) \right)}{dx}.............\left( 1

\right)$

In the question, since we are given a function \[f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{-

1}}x \right)\]. So, we can find out $g\left( x \right)=m{{\sin }^{-1}}x$. Substituting \[f\left( g\left( x

\right) \right)=\sin \left( m{{\sin }^{-1}}x \right)\] and $g\left( x \right)=m{{\sin }^{-1}}x$ in equation

$\left( 1 \right)$, we get,

\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x

\right) \right)}{d\left( m{{\sin }^{-1}}x \right)}\times \dfrac{d\left( m{{\sin }^{-1}}x

\right)}{dx}.............\left( 2 \right)\]

Since we are differentiating $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to $m{{\sin }^{-1}}x$, we

get,

\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left(

m{{\sin }^{-1}}x \right)\], $\because \dfrac{d\sin x}{dx}=\cos x$

Also, we have a formula which gives us the derivative of ${{\sin }^{-1}}x$ with respect to $x$,

$\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}..........\left( 4 \right)$

Since $m$is a constant, we can take $m$out of the derivative in $\dfrac{d\left( m{{\sin }^{-1}}x

\right)}{dx}$ and hence, we can write $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ as,

\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=m\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\]

Substituting $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ from equation $\left( 4

\right)$ in the above equation to obtain the derivative of $m{{\sin }^{-1}}x$ with respect to $x$, we

get,

\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}...........\left( 5 \right)\]

Substituting \[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x

\right)}=\cos \left( m{{\sin }^{-1}}x \right)\] from equation $\left( 3 \right)$ and \[\dfrac{d\left(

m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}\] from equation $\left( 5 \right)$ in

equation $\left( 2 \right)$, we get,

\[\begin{align}

& \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\cos \left( m{{\sin }^{-1}}x

\right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}} \\

& \Rightarrow \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{m\cos \left( m{{\sin

}^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\

\end{align}\]

None of the options are matching with the answer that is \[\dfrac{m\cos \left( m{{\sin }^{-1}}x

\right)}{\sqrt{1-{{x}^{2}}}}\].

Therefore the correct answer is option (d).

Note: There is a possibility of committing a mistake while writing the derivative of $\sin x$ or $\cos x$. There is always a confusion in writing the negative sign. One may write the derivative of $\sin x$ as $-\cos x$ instead of $\cos x$. Also, one may write the derivative of $\cos x$ as $\sin x$ instead of $-

\sin x$. So, in order to avoid such mistakes, one must remember them thoroughly.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main