Answer
Verified
446.4k+ views
Hint: Here, the given function is inverse function so calculation will be tough but we can solve the question by using some standard results of trigonometric ratios and then we will substitute all the values in first principle formula to evaluate the derivative of $ {{\sec }^{-1}}x $ with respect to x using first principle.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE