
Differentiate $ {{\sec }^{-1}}x $ with respect to x using first principle.
Answer
566.7k+ views
Hint: Here, the given function is inverse function so calculation will be tough but we can solve the question by using some standard results of trigonometric ratios and then we will substitute all the values in first principle formula to evaluate the derivative of $ {{\sec }^{-1}}x $ with respect to x using first principle.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

