Answer

Verified

339.6k+ views

**Hint:**We first define the multiplication rule and how the differentiation of function works. We take addition of these two different differentiated values. We take the $\dfrac{dy}{dx}$ altogether. We keep one function and differentiate the other one and then do the same thing with the other function. Then we take the addition to complete the formula.

**Complete step-by-step solution:**

We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]

Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].

The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)={{e}^{x}}\ln x$. We assume the functions where \[u\left( x \right)={{e}^{x}},v\left( x \right)=\ln x\]

We know that differentiation of \[u\left( x \right)={{e}^{x}}\] is ${{u}^{'}}\left( x \right)={{e}^{x}}$ and differentiation of \[v\left( x \right)=\ln x\] is \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\]. We now take differentiation on both parts of $f\left( x \right)={{e}^{x}}\ln x$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]\].

We place the values of ${{u}^{'}}\left( x \right)={{e}^{x}}$ and \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\] to get

\[\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]={{e}^{x}}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( {{e}^{x}} \right)\].

We take all the $\dfrac{dy}{dx}$ forms altogether to get

\[\begin{align}

& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right] \\

& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\times \dfrac{1}{x}+\left( \ln x \right)\left( {{e}^{x}} \right)=\dfrac{{{e}^{x}}}{x}+{{e}^{x}}\ln x \\

& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\left( \ln x+\dfrac{1}{x} \right) \\

\end{align}\]

**Therefore, differentiation of $f\left( x \right)={{e}^{x}}\ln x$ is \[{{e}^{x}}\left( \ln x+\dfrac{1}{x} \right)\].**

**Note:**We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Which of the following books is not written by Harshavardhana class 6 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

In which states of India are mango showers common What class 9 social science CBSE

What Made Mr Keesing Allow Anne to Talk in Class class 10 english CBSE