
How do you differentiate $f\left( x \right)={{e}^{x}}\ln x$?
Answer
533.7k+ views
Hint: We first define the multiplication rule and how the differentiation of function works. We take addition of these two different differentiated values. We take the $\dfrac{dy}{dx}$ altogether. We keep one function and differentiate the other one and then do the same thing with the other function. Then we take the addition to complete the formula.
Complete step-by-step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)={{e}^{x}}\ln x$. We assume the functions where \[u\left( x \right)={{e}^{x}},v\left( x \right)=\ln x\]
We know that differentiation of \[u\left( x \right)={{e}^{x}}\] is ${{u}^{'}}\left( x \right)={{e}^{x}}$ and differentiation of \[v\left( x \right)=\ln x\] is \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\]. We now take differentiation on both parts of $f\left( x \right)={{e}^{x}}\ln x$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]\].
We place the values of ${{u}^{'}}\left( x \right)={{e}^{x}}$ and \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\] to get
\[\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]={{e}^{x}}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( {{e}^{x}} \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\times \dfrac{1}{x}+\left( \ln x \right)\left( {{e}^{x}} \right)=\dfrac{{{e}^{x}}}{x}+{{e}^{x}}\ln x \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\left( \ln x+\dfrac{1}{x} \right) \\
\end{align}\]
Therefore, differentiation of $f\left( x \right)={{e}^{x}}\ln x$ is \[{{e}^{x}}\left( \ln x+\dfrac{1}{x} \right)\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Complete step-by-step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)={{e}^{x}}\ln x$. We assume the functions where \[u\left( x \right)={{e}^{x}},v\left( x \right)=\ln x\]
We know that differentiation of \[u\left( x \right)={{e}^{x}}\] is ${{u}^{'}}\left( x \right)={{e}^{x}}$ and differentiation of \[v\left( x \right)=\ln x\] is \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\]. We now take differentiation on both parts of $f\left( x \right)={{e}^{x}}\ln x$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]\].
We place the values of ${{u}^{'}}\left( x \right)={{e}^{x}}$ and \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\] to get
\[\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]={{e}^{x}}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( {{e}^{x}} \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\times \dfrac{1}{x}+\left( \ln x \right)\left( {{e}^{x}} \right)=\dfrac{{{e}^{x}}}{x}+{{e}^{x}}\ln x \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\left( \ln x+\dfrac{1}{x} \right) \\
\end{align}\]
Therefore, differentiation of $f\left( x \right)={{e}^{x}}\ln x$ is \[{{e}^{x}}\left( \ln x+\dfrac{1}{x} \right)\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

