Answer

Verified

394.5k+ views

**Hint:**The given problem can be solved by using the concept of the charging and discharging of the capacitors. Capacitors are devices that store the electrical energy in their electric field. This energy depends on the potential difference across the plates of the capacitor and the capacitance of the capacitor.

**Complete step by step solution:**

Let the two capacitors be ${C_1}$ and ${C_2}$ at some potential differences ${V_1}$ and ${V_2}$ respectively. We are given that both the conductors are joined by a wire. As soon as they are connected by the wire, charge starts to flow from higher potential to lower potential. This flow of charge continues till they reach a common potential difference.

The common potential difference will be:

${V_{common}} = \dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}$

Here, {V_{common}} is the common potential difference.

The initial energy stored in each capacitor is:

${E_1} = \dfrac{1}{2}{C_1}{V_1}^2 and {E_2} = \dfrac{1}{2}{C_2}{V_2}^2$

Here, ${E_1}$ and ${E_2}$ are the initial energy stored in both the capacitors.

After joining the wire, both the capacitors will reach a point of common potential difference, therefore the final energy in both the capacitors will be given as

${E_{final}} = \dfrac{1}{2}{C_1}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2} + \dfrac{1}{2}{C_2}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$

$ \Rightarrow {E_{final}} = \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$

Here, ${E_{final}}$ is the final energy stored in the capacitors.

The loss in energy will be given by the difference between initial energy and final energy;

$\left( {{E_1} + {E_2}} \right) - {E_{final}} = \left( {\dfrac{1}{2}{C_1}{V_1}^2 + \dfrac{1}{2}{C_2}{V_2}^2} \right) - \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$

$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{2}\left( {{C_1}{V_1}^2 + {C_2}{V_2}^2} \right) - \left[ {\left( {{C_1} + {C_2}} \right){{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)}^2}} \right]$

On solving the equation, we have

$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left[ {\left( {{C_1}^2{V_1}^2 + {C_2}{C_1}{V_2}^2 + {C_2}{C_1}{V_1}^2 + {C_2}^2{V_2}^2} \right) - \left( {{C_1}^2{V_1}^2 + {C_2}{V_2}^2 + 2{C_1}{C_2}{V_1}{V_2}} \right)} \right]$

$\Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left( {{C_1}{C_2}{V_2}^2 + {C_1}{C_2}{V_1}^2 - 2{C_1}{C_2}{V_1}{V_2}} \right)$

$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}{C_1}{C_2}{\left( {{V_1} - {V_2}} \right)^2}$

This is the required formula for loss of energy on joining of two charged conductors by a wire.

**Note:**In the derived formula, the capacitances cannot be negative individually. Also, the value of ${\left( {{V_1} - {V_2}} \right)^2}$ will be non-negative as it is a square value, this implies that the final value will be positive. Thus, initial energy was greater than final energy. Also, for ${V_1}$ = ${V_2}$ , the difference in energy will be zero. This means that no loss of energy takes place as there is no potential difference initially, there will be no flow of current.

Recently Updated Pages

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

The provincial president of the constituent assembly class 11 social science CBSE

Gersoppa waterfall is located in AGuyana BUganda C class 9 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The hundru falls is in A Chota Nagpur Plateau B Calcutta class 8 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE