
Define the relaxation time of the free electrons drifting in a conductor: How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the electrical resistivity of the material.
Answer
579k+ views
Hint: The relaxation time of the free electrons drifting in a conductor is given by the formula, $T=v\dfrac{m}{e}E$
The expression of electrical resistivity of the material is obtained by modifying the expression,
Electric field is equal to E and voltage is equal to V
$\begin{align}
& E=\dfrac{V}{L} \\
& V=IR \\
\end{align}$
These all are helpful in finding the answer.
Complete step-by-step solution:
First of all, let us check what relaxation time actually means.
Relaxation time is the time needed for the exponential decrease of the variable from its initial value to the $\dfrac{1}{{e}^{th}}$ value or 0.368 of that value. The relaxation time of an electron is the time gap between the successive collision of electrons in a conductor.
Now let us check the question,
Let I is the current that flows through the conductor, n is the number of electrons in that conductor, A is the area of the conductor, v is the drift velocity of the electron, e is the charge of the electron in that conductor, E is the electric field in that region, m is the mass of electron and T is the relaxation time period.
Then, $V=IR$
Rearranging this equation will give, $T=v\dfrac{m}{e}E$
The current flowing in the conductor I is
$I=-neA{{v}_{d}}=neA\left( e\dfrac{E}{m} \right)TI=\dfrac{n{{e}^{2}}EA}{m}T$
Also we know that electric field is given by the equation,
$E=\dfrac{V}{L}$
Substituting this in equation of current will give,
$I=\dfrac{n{{e}^{2}}VA}{mL}T\dfrac{V}{I}=\dfrac{mL}{n{{e}^{2}}TA}$
According to ohm's law,
$V=IR$
$R=\dfrac{V}{I}$
Therefore the equation becomes
\[R=\left( \dfrac{m}{n{{e}^{2}}T} \right)\dfrac{L}{A}; R=\rho \dfrac{L}{A}\]
\[R=\rho \dfrac{L}{A}\]
is the required solution.
Note: As the temperature of a conductor decreases, the number of collisions of electrons in the conductor also decreases. Therefore the free travel time increases or relaxation time increases. This is the temperature dependence of relaxation time.
The expression of electrical resistivity of the material is obtained by modifying the expression,
Electric field is equal to E and voltage is equal to V
$\begin{align}
& E=\dfrac{V}{L} \\
& V=IR \\
\end{align}$
These all are helpful in finding the answer.
Complete step-by-step solution:
First of all, let us check what relaxation time actually means.
Relaxation time is the time needed for the exponential decrease of the variable from its initial value to the $\dfrac{1}{{e}^{th}}$ value or 0.368 of that value. The relaxation time of an electron is the time gap between the successive collision of electrons in a conductor.
Now let us check the question,
Let I is the current that flows through the conductor, n is the number of electrons in that conductor, A is the area of the conductor, v is the drift velocity of the electron, e is the charge of the electron in that conductor, E is the electric field in that region, m is the mass of electron and T is the relaxation time period.
Then, $V=IR$
Rearranging this equation will give, $T=v\dfrac{m}{e}E$
The current flowing in the conductor I is
$I=-neA{{v}_{d}}=neA\left( e\dfrac{E}{m} \right)TI=\dfrac{n{{e}^{2}}EA}{m}T$
Also we know that electric field is given by the equation,
$E=\dfrac{V}{L}$
Substituting this in equation of current will give,
$I=\dfrac{n{{e}^{2}}VA}{mL}T\dfrac{V}{I}=\dfrac{mL}{n{{e}^{2}}TA}$
According to ohm's law,
$V=IR$
$R=\dfrac{V}{I}$
Therefore the equation becomes
\[R=\left( \dfrac{m}{n{{e}^{2}}T} \right)\dfrac{L}{A}; R=\rho \dfrac{L}{A}\]
\[R=\rho \dfrac{L}{A}\]
is the required solution.
Note: As the temperature of a conductor decreases, the number of collisions of electrons in the conductor also decreases. Therefore the free travel time increases or relaxation time increases. This is the temperature dependence of relaxation time.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

