
Define a function \[f:R \to R{\text{ }}by{\text{ }}f(x) = \max \left\{ {\left| x \right|,\left| {x - 1} \right|,.......\left| {x - 2n} \right|} \right\}\]
Where n is a fixed natural number. Then \[\int\limits_0^{2n} {f(x)dx} \] is.
\[(A){\text{ }}n{\text{ }}\]
\[(B){\text{ }}{n^2}\]
\[(C){\text{ }}3n\]
\[(D){\text{ }}3{n^2}\]
Answer
599.7k+ views
Hint:- Check values of \[f(x)\] in different ranges from \[\left[ {0,2n} \right]\].
As we know that we had to find the value of \[\int\limits_0^{2n} {f(x)dx} \].
\[ \Rightarrow \]Where, \[f(x) = \max \left\{ {\left| x \right|,\left| {x - 1} \right|,.......\left| {x - 2n} \right|} \right\}{\text{ }}\] (1)
So, from equation 1, we can see that the value of \[f(x)\] will be,
\[ \Rightarrow f(x) = \left| {x - 2n} \right|\] for x in range \[\left[ {0,n} \right]\] (2)
\[ \Rightarrow f(x) = \left| x \right|\] for x in range \[\left[ {n,2n} \right]\] (3)
So, to find the value of \[\int\limits_0^{2n} {f(x)dx} \] we had to break the limits of the integral into two parts,
\[ \Rightarrow \]So, \[\int\limits_0^{2n} {f(x)dx} = \int\limits_0^n {f(x)dx} + \int\limits_n^{2n} {f(x)dx} {\text{ }}\] (4)
\[ \Rightarrow \]And, \[\int\limits_0^n {f(x)dx} = \int\limits_0^n {\left| {x - 2n} \right|dx} \] from equation 2
As, we know that \[2n{\text{ }} > x\] for x in range \[\left[ {0,n} \right]\].
\[ \Rightarrow \]So, \[\int\limits_0^n {f(x)dx} = \int\limits_0^n {\left( {2n - x} \right)dx} \]
Now we had to solve the above equation.
So, solving the above equation. It becomes,
\[ \Rightarrow \int\limits_0^n {f(x)dx} = \left( {2nx - \dfrac{{{x^2}}}{2}} \right)_0^n = \left( {2{n^2} - \dfrac{{{n^2}}}{2}} \right) = \dfrac{{3{n^2}}}{2}\] (5)
\[ \Rightarrow \]And, \[\int\limits_n^{2n} {f(x)dx} = \int\limits_n^{2n} {\left| x \right|dx} \] from equation 3
\[ \Rightarrow \]So, \[\int\limits_n^{2n} {f(x)dx} = \int\limits_n^{2n} {\left( x \right)dx} \] for x in range \[\left[ {n,2n} \right]\]
So, solving the above equation. It becomes,
\[ \Rightarrow \int\limits_n^{2n} {f(x)dx} = \left( {\dfrac{{{x^2}}}{2}} \right)_n^{2n}{\text{ = }}\left( {\dfrac{{4{n^2}}}{2} - \dfrac{{{n^2}}}{2}} \right){\text{ = }}\dfrac{{3{n^2}}}{2}\] (6)
Now, putting the value of \[\int\limits_0^n {f(x)dx} \] and \[\int\limits_n^{2n} {f(x)dx} \] from equation 5 and 6 to equation 4.
\[ \Rightarrow \]So, \[\int\limits_0^{2n} {f(x)dx} = \dfrac{{3{n^2}}}{2} + \dfrac{{3{n^2}}}{2} = 3{n^2}\]
Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then we should break the
limits of integral according to the value of function in different ranges. Otherwise
solving the given integral without checking the value of integral in different integral
will give us incorrect answers.
As we know that we had to find the value of \[\int\limits_0^{2n} {f(x)dx} \].
\[ \Rightarrow \]Where, \[f(x) = \max \left\{ {\left| x \right|,\left| {x - 1} \right|,.......\left| {x - 2n} \right|} \right\}{\text{ }}\] (1)
So, from equation 1, we can see that the value of \[f(x)\] will be,
\[ \Rightarrow f(x) = \left| {x - 2n} \right|\] for x in range \[\left[ {0,n} \right]\] (2)
\[ \Rightarrow f(x) = \left| x \right|\] for x in range \[\left[ {n,2n} \right]\] (3)
So, to find the value of \[\int\limits_0^{2n} {f(x)dx} \] we had to break the limits of the integral into two parts,
\[ \Rightarrow \]So, \[\int\limits_0^{2n} {f(x)dx} = \int\limits_0^n {f(x)dx} + \int\limits_n^{2n} {f(x)dx} {\text{ }}\] (4)
\[ \Rightarrow \]And, \[\int\limits_0^n {f(x)dx} = \int\limits_0^n {\left| {x - 2n} \right|dx} \] from equation 2
As, we know that \[2n{\text{ }} > x\] for x in range \[\left[ {0,n} \right]\].
\[ \Rightarrow \]So, \[\int\limits_0^n {f(x)dx} = \int\limits_0^n {\left( {2n - x} \right)dx} \]
Now we had to solve the above equation.
So, solving the above equation. It becomes,
\[ \Rightarrow \int\limits_0^n {f(x)dx} = \left( {2nx - \dfrac{{{x^2}}}{2}} \right)_0^n = \left( {2{n^2} - \dfrac{{{n^2}}}{2}} \right) = \dfrac{{3{n^2}}}{2}\] (5)
\[ \Rightarrow \]And, \[\int\limits_n^{2n} {f(x)dx} = \int\limits_n^{2n} {\left| x \right|dx} \] from equation 3
\[ \Rightarrow \]So, \[\int\limits_n^{2n} {f(x)dx} = \int\limits_n^{2n} {\left( x \right)dx} \] for x in range \[\left[ {n,2n} \right]\]
So, solving the above equation. It becomes,
\[ \Rightarrow \int\limits_n^{2n} {f(x)dx} = \left( {\dfrac{{{x^2}}}{2}} \right)_n^{2n}{\text{ = }}\left( {\dfrac{{4{n^2}}}{2} - \dfrac{{{n^2}}}{2}} \right){\text{ = }}\dfrac{{3{n^2}}}{2}\] (6)
Now, putting the value of \[\int\limits_0^n {f(x)dx} \] and \[\int\limits_n^{2n} {f(x)dx} \] from equation 5 and 6 to equation 4.
\[ \Rightarrow \]So, \[\int\limits_0^{2n} {f(x)dx} = \dfrac{{3{n^2}}}{2} + \dfrac{{3{n^2}}}{2} = 3{n^2}\]
Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then we should break the
limits of integral according to the value of function in different ranges. Otherwise
solving the given integral without checking the value of integral in different integral
will give us incorrect answers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What happens if Mutations are not corrected class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

