Answer
Verified
456.6k+ views
Hint: First, multiply and divide by the conjugate of the denominator to remove the imaginary part from the denominator and simplify it. After that find the modulus of z. Then, find the argument of z. then substitute the value in $z = r\left( {\cos \theta + i\sin \theta } \right)$ to get the polar form.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it