
Construct a $2\times 2$ matrix $A={{\left[ {{a}_{ij}} \right]}_{2\times 2}}$ , whose elements are ${{a}_{ij}}$ and ${{a}_{ij}}=\dfrac{{{\left( i+j \right)}^{2}}}{2}$ .
Answer
606k+ views
Hint: At first construct the matrix by putting ${{a}_{ij}}$, with the actual values of $i,j$ . Then calculate the numerical values by using ${{a}_{ij}}=\dfrac{{{\left( i+j \right)}^{2}}}{2}$.
Complete step-by-step answer:
When some numbers are arranged in rows and columns and are surrounded on both sides by square brackets, we call it a matrix.
Here we have to construct a $2\times 2$ matrix named $A$ .
Now, this $2\times 2$ is known as the order of the matrix. Order of matrices helps us to know how many rows and how many columns there are in a matrix.
Generally we denote the order of a matrix by $m\times n$, where $m$ denotes the number of rows and $n$ denotes the number of columns. Here the order of the matrix is $2\times 2$ . That means this matrix has 2 rows and 2 columns.
Now, the elements of the matrix are generally denoted by ${{a}_{ij}}$. Where $ij$ help us to understand the actual position of the element.
In a matrix $A$, an element in row $i$ and column $j$ is represented by ${{a}_{ij}}$.
${{a}_{11}}$ is the element in 1st row and 1st column.
${{a}_{12}}$ is the element in 1st row and 2nd column.
${{a}_{21}}$ is the element in the 2nd row and 1st column.
${{a}_{22}}$ is the element in the 2nd row and 2nd column.
Therefore, $A=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]$
Now let us substitute the values.
${{a}_{11}}=\dfrac{{{\left( 1+1 \right)}^{2}}}{2}=\dfrac{{{2}^{2}}}{2}=2$, here i is 1 and j is 1.
${{a}_{12}}=\dfrac{{{\left( 1+2 \right)}^{2}}}{2}=\dfrac{{{3}^{2}}}{2}=\dfrac{9}{2}$, here i is 1 and j is 2.
${{a}_{21}}=\dfrac{{{\left( 2+1 \right)}^{2}}}{2}=\dfrac{{{3}^{2}}}{2}=\dfrac{9}{2}$, here i is 2 and j is 1.
${{a}_{22}}=\dfrac{{{\left( 2+2 \right)}^{2}}}{2}=\dfrac{{{4}^{2}}}{2}=\dfrac{16}{2}=8$, here i is 2 and j is 2.
Therefore,
$A=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & \dfrac{9}{2} \\
\dfrac{9}{2} & 8 \\
\end{matrix} \right]$
Hence, $A=\left[ \begin{matrix}
2 & \dfrac{9}{2} \\
\dfrac{9}{2} & 8 \\
\end{matrix} \right]$
Note: We generally make mistakes to understand the position of an element in a matrix. Always check the position of the row first then the column.
Complete step-by-step answer:
When some numbers are arranged in rows and columns and are surrounded on both sides by square brackets, we call it a matrix.
Here we have to construct a $2\times 2$ matrix named $A$ .
Now, this $2\times 2$ is known as the order of the matrix. Order of matrices helps us to know how many rows and how many columns there are in a matrix.
Generally we denote the order of a matrix by $m\times n$, where $m$ denotes the number of rows and $n$ denotes the number of columns. Here the order of the matrix is $2\times 2$ . That means this matrix has 2 rows and 2 columns.
Now, the elements of the matrix are generally denoted by ${{a}_{ij}}$. Where $ij$ help us to understand the actual position of the element.
In a matrix $A$, an element in row $i$ and column $j$ is represented by ${{a}_{ij}}$.
${{a}_{11}}$ is the element in 1st row and 1st column.
${{a}_{12}}$ is the element in 1st row and 2nd column.
${{a}_{21}}$ is the element in the 2nd row and 1st column.
${{a}_{22}}$ is the element in the 2nd row and 2nd column.
Therefore, $A=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]$
Now let us substitute the values.
${{a}_{11}}=\dfrac{{{\left( 1+1 \right)}^{2}}}{2}=\dfrac{{{2}^{2}}}{2}=2$, here i is 1 and j is 1.
${{a}_{12}}=\dfrac{{{\left( 1+2 \right)}^{2}}}{2}=\dfrac{{{3}^{2}}}{2}=\dfrac{9}{2}$, here i is 1 and j is 2.
${{a}_{21}}=\dfrac{{{\left( 2+1 \right)}^{2}}}{2}=\dfrac{{{3}^{2}}}{2}=\dfrac{9}{2}$, here i is 2 and j is 1.
${{a}_{22}}=\dfrac{{{\left( 2+2 \right)}^{2}}}{2}=\dfrac{{{4}^{2}}}{2}=\dfrac{16}{2}=8$, here i is 2 and j is 2.
Therefore,
$A=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & \dfrac{9}{2} \\
\dfrac{9}{2} & 8 \\
\end{matrix} \right]$
Hence, $A=\left[ \begin{matrix}
2 & \dfrac{9}{2} \\
\dfrac{9}{2} & 8 \\
\end{matrix} \right]$
Note: We generally make mistakes to understand the position of an element in a matrix. Always check the position of the row first then the column.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

