Answer

Verified

412.2k+ views

**Hint**: We have \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] which is the product of two functions \[{{\left( 1-x \right)}^{\alpha }}\] and \[{{e}^{\alpha x}}.\] In order to find \[{{y}_{1}}\] we have to first find the first derivative of y with respect to x. We use the product formula, i.e. \[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] to find the first derivative. When we find our first derivative, we multiply it with (1 – x) to get our required solution.

**:**

__Complete step-by-step answer__We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]

Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,

\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]

So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]

So, we have,

\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]

Using the product rule, we get,

\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]

Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,

\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]

And,

\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]

\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]

\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]

Now we put these two values in (i), we will have,

\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]

Now, simplifying we get,

\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]

Taking \[\alpha {{e}^{\alpha x}}\] we get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]

Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]

On simplifying, we will get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]

So, we get,

\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]

Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]

As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]

\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]

So we get the required answer as \[-x\alpha y.\]

**So, the correct answer is “Option D”.**

**Note**: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]

So, we get,

\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail