Answer

Verified

447.3k+ views

**Hint**: We have \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] which is the product of two functions \[{{\left( 1-x \right)}^{\alpha }}\] and \[{{e}^{\alpha x}}.\] In order to find \[{{y}_{1}}\] we have to first find the first derivative of y with respect to x. We use the product formula, i.e. \[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] to find the first derivative. When we find our first derivative, we multiply it with (1 – x) to get our required solution.

**:**

__Complete step-by-step answer__We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]

Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,

\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]

So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]

So, we have,

\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]

Using the product rule, we get,

\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]

Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,

\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]

And,

\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]

\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]

\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]

Now we put these two values in (i), we will have,

\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]

Now, simplifying we get,

\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]

Taking \[\alpha {{e}^{\alpha x}}\] we get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]

Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]

On simplifying, we will get,

\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]

So, we get,

\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]

Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]

As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]

\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]

\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]

So we get the required answer as \[-x\alpha y.\]

**So, the correct answer is “Option D”.**

**Note**: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]

\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]

So, we get,

\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE