
Consider the following function, \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] then \[\left( 1-x \right){{y}_{1}}=\]
\[\left( a \right)\alpha y\]
\[\left( b \right)\alpha xy\]
\[\left( c \right)\dfrac{xy}{y}\]
\[\left( d \right)-\alpha xy\]
Answer
592.5k+ views
Hint: We have \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] which is the product of two functions \[{{\left( 1-x \right)}^{\alpha }}\] and \[{{e}^{\alpha x}}.\] In order to find \[{{y}_{1}}\] we have to first find the first derivative of y with respect to x. We use the product formula, i.e. \[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] to find the first derivative. When we find our first derivative, we multiply it with (1 – x) to get our required solution.
Complete step-by-step answer:
We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]
Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,
\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]
So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]
So, we have,
\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]
Using the product rule, we get,
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]
Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,
\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]
And,
\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]
Now we put these two values in (i), we will have,
\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]
Now, simplifying we get,
\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]
Taking \[\alpha {{e}^{\alpha x}}\] we get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]
Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]
On simplifying, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]
So, we get,
\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]
Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]
As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]
So we get the required answer as \[-x\alpha y.\]
So, the correct answer is “Option D”.
Note: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]
So, we get,
\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]
Complete step-by-step answer:
We are given y as \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\] We have to calculate the value of \[\left( 1-x \right){{y}_{1}}.\] To so, we have to evaluate the first derivative of y with respect to x as we know that \[{{y}_{1}}=\dfrac{dy}{dx}.\]
Now, as we can see that \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\] is a product of two functions, so to find the derivative, we use the product rule,
\[\dfrac{d\left( uv \right)}{dx}=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]
So we use this on \[y={{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}.\]
So, we have,
\[\dfrac{dy}{dx}=\dfrac{d\left( {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}} \right)}{dx}\]
Using the product rule, we get,
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\alpha x}}\dfrac{d}{dx}{{\left( 1-x \right)}^{\alpha }}+{{\left( 1-x \right)}^{\alpha }}\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}......\left( i \right)\]
Now as \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}\] and \[\dfrac{d\left( {{e}^{x}} \right)}{dx}=1,\] we get,
\[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=a\left( 1-x \right)\left( -1 \right)\]
And,
\[\dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\dfrac{{{e}^{\alpha x}}d\left( \alpha x \right)}{\alpha x}\]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}={{e}^{\alpha x}}.\alpha \]
\[\Rightarrow \dfrac{d\left( {{e}^{\alpha x}} \right)}{dx}=\alpha .{{e}^{\alpha x}}\]
Now we put these two values in (i), we will have,
\[\dfrac{dy}{dx}={{e}^{\alpha x}}\left[ \alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right) \right]+{{\left( 1-x \right)}^{^{a}}}\left( \alpha {{e}^{\alpha x}} \right)\]
Now, simplifying we get,
\[\dfrac{dy}{dx}=-\alpha {{\left( 1-x \right)}^{a-1}}{{e}^{\alpha x}}+\alpha {{\left( 1-x \right)}^{\alpha }}{{e}^{\alpha x}}\]
Taking \[\alpha {{e}^{\alpha x}}\] we get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}\left[ -{{\left( 1-x \right)}^{a-1}}+{{\left( 1-x \right)}^{\alpha }} \right]\]
Taking \[{{\left( 1-x \right)}^{\alpha -1}}\] common, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left[ -1+1-x \right]\]
On simplifying, we will get,
\[\Rightarrow \dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\]
So, we get,
\[\Rightarrow {{y}_{1}}=\dfrac{dy}{dx}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right).......\left( ii \right)\]
Now, we want to find the value \[\left( 1-x \right){{y}_{1}}.\] So, we will multiply the value of \[{{y}_{1}}\] in (ii) by (1 – x). So, we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha -1}}\left( -x \right)\left( 1-x \right)\]
As, \[{{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}=y,\] we get,
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha {{e}^{\alpha x}}{{\left( 1-x \right)}^{\alpha }}\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=\alpha y\left( -x \right)\]
\[\Rightarrow \left( 1-x \right){{y}_{1}}=-x\alpha y\]
So we get the required answer as \[-x\alpha y.\]
So, the correct answer is “Option D”.
Note: While finding the derivative, always double-check your solution, as \[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}\ne \alpha {{\left( 1-x \right)}^{\alpha -1}}.\] When we differentiate \[{{\left( 1-x \right)}^{\alpha }}\] with x, first we take (1 – x) as t. So, \[\dfrac{d{{\left( 1-x \right)}^{\alpha }}}{dx}=\dfrac{d\left( {{t}^{\alpha }} \right)}{dx}=\alpha {{t}^{\alpha -1}}\dfrac{dt}{dx}.\] Now, we will differentiate t = 1 – x with respect to x.
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1-x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=\dfrac{d\left( 1 \right)}{dx}-\dfrac{d\left( x \right)}{dx}\]
\[\Rightarrow \dfrac{d\left( t \right)}{dx}=-1\]
So, we get,
\[\dfrac{d\left[ {{\left( 1-x \right)}^{\alpha }} \right]}{dx}=\alpha {{\left( 1-x \right)}^{\alpha -1}}\left( -1 \right)\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

