Answer
Verified
446.7k+ views
Hint: As we can see from the question, we are given a square matrix of order 2 having four distinct elements and we have to evaluate four parts. Since there are 4 elements in each matrix, so we will have 4!=24 such matrices. We will use a formula of determinants to find a solution of given parts, for (A) we will use a combination of any two elements (taking their product) to be the value of determinant because of zero being one of the elements of all matrices. For (B), we will calculate possible values of determinant and hence, add them to find a solution. For (C), we will choose least absolute value from values of determinant calculated earlier and then use the formula $\left| adj\; adj\; adj........adjA\left( r\text{ times} \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{r}}}}$ where n is the order of matrix to find $\left| adj\; adj\; adjA \right|$. For (D), we will choose least value from values of determinant calculated earlier and then use the formula $\det \left( a{{A}^{-1}} \right)={{a}^{n}}\det \left( {{A}^{-1}} \right),\left| {{A}^{-1}} \right|={{\left| A \right|}^{-1}}$ to find $\det \left( 4{{A}^{-1}} \right)$.
Complete step-by-step solution
Since we have 4 distinct elements in each matrix and therefore, there are 4!=24 such matrices. But possible values of determinant can only be six. Therefore, we can get possible values by
\[\begin{align}
& \left| \begin{matrix}
0 & 1 \\
2 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 2 \\
1 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 1 \\
2 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 2 \\
1 & 0 \\
\end{matrix} \right|=-2 \\
& \left| \begin{matrix}
2 & 0 \\
4 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 4 \\
0 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 0 \\
4 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 4 \\
0 & 2 \\
\end{matrix} \right|=2 \\
& \left| \begin{matrix}
0 & 1 \\
4 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 4 \\
1 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 4 \\
1 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 1 \\
4 & 0 \\
\end{matrix} \right|=-4 \\
& \left| \begin{matrix}
1 & 2 \\
0 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 0 \\
2 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 0 \\
2 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 2 \\
0 & 1 \\
\end{matrix} \right|=4 \\
& \left| \begin{matrix}
0 & 2 \\
4 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 4 \\
2 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 4 \\
2 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 2 \\
4 & 0 \\
\end{matrix} \right|=-8 \\
& \left| \begin{matrix}
2 & 0 \\
1 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 1 \\
0 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 1 \\
0 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 0 \\
1 & 2 \\
\end{matrix} \right|=8 \\
\end{align}\]
Hence, possible values are $-2, 2, -4, 4, -8, 8.$
A. Non negative values of det(A) are 2, 4, 8. Hence, for $\left( \text{A} \right)\to \left( \text{p} \right),\left( \text{q} \right),\left( \text{r} \right), \left( \text{s} \right)$ are true.
B. Sum of values of determinants corresponding to N matrices is $2+\left( -2 \right)+4+\left( -4 \right)+8+\left( -8 \right)=0$ hence, for $\left( \text{B} \right)\to \text{S}$ is true.
C. Least absolute value determinant of any such matrix as we can see is 2. Hence, $\left| A \right|=2$.
We have to calculate $\left| adj\;\; adj\;\; adj\;\;\left( A \right) \right|$. Since, we know that $\left| adj\;\; adj\;\; adj........adjA\left( r\text{ times} \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{r}}}}$ where n is order of matrix, we can use this to find $\left| adj\; adj\; adj\left( A \right) \right|$
Here, n = 2 because A is a $2\times 2$ matrix.
Also, r = 3 as we can see. Hence, $\left| adj\;\; adj\;\; adj\left( A \right) \right|={{\left| A \right|}^{{{\left( 2-1 \right)}^{3}}}}={{\left| A \right|}^{{{\left( 1 \right)}^{3}}}}=\left| A \right|$
But $\left| A \right|=2$
Hence, $\left| adj\; adj\; adj\left( A \right) \right|=2$
Hence, for $\left( \text{C} \right)\to \left( \text{p} \right)$ is true.
D. As we can see, the least algebraic value of determinant for such a matrix is -8. Therefore, $\left| A \right|=-8$ Possible value of $\left( 4{{A}^{-1}} \right)$ can be calculated as. As we know, $\left| a{{A}^{-1}} \right|={{a}^{n}}\left| {{A}^{-1}} \right|$ here a = 4 and n = 2.
Therefore, $\left| 4{{A}^{-1}} \right|={{4}^{2}}\left| {{A}^{-1}} \right|=16\left| {{A}^{-1}} \right|$
As we know, $\left| {{A}^{-1}} \right|={{\left| A \right|}^{-1}}$ so $\left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}$
But $\left| A \right|=-8$ so $\left| {{A}^{-1}} \right|=\dfrac{1}{-8}$
So $\left| 4{{A}^{-1}} \right|=16\left| {{A}^{-1}} \right|=\dfrac{16}{-8}=-2$
Hence for $\left( \text{D} \right)\to \left( \text{r} \right)$ is true.
Note: Students should carefully determine the values of determinants. They should learn basic formulas for calculating determinants. There is a very high chance of making mistakes in plus-minus signs while calculating determinants. Students should not get confused with the least absolute value; both are completely different. In absolute value, we don't care for signs, hence 2 is the least absolute value. In algebraic value, signs are given importance hence, -8 is the least algebraic value.
Complete step-by-step solution
Since we have 4 distinct elements in each matrix and therefore, there are 4!=24 such matrices. But possible values of determinant can only be six. Therefore, we can get possible values by
\[\begin{align}
& \left| \begin{matrix}
0 & 1 \\
2 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 2 \\
1 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 1 \\
2 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 2 \\
1 & 0 \\
\end{matrix} \right|=-2 \\
& \left| \begin{matrix}
2 & 0 \\
4 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 4 \\
0 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 0 \\
4 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 4 \\
0 & 2 \\
\end{matrix} \right|=2 \\
& \left| \begin{matrix}
0 & 1 \\
4 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 4 \\
1 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 4 \\
1 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 1 \\
4 & 0 \\
\end{matrix} \right|=-4 \\
& \left| \begin{matrix}
1 & 2 \\
0 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 0 \\
2 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 0 \\
2 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 2 \\
0 & 1 \\
\end{matrix} \right|=4 \\
& \left| \begin{matrix}
0 & 2 \\
4 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
0 & 4 \\
2 & 1 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 4 \\
2 & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 2 \\
4 & 0 \\
\end{matrix} \right|=-8 \\
& \left| \begin{matrix}
2 & 0 \\
1 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 1 \\
0 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 1 \\
0 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
4 & 0 \\
1 & 2 \\
\end{matrix} \right|=8 \\
\end{align}\]
Hence, possible values are $-2, 2, -4, 4, -8, 8.$
A. Non negative values of det(A) are 2, 4, 8. Hence, for $\left( \text{A} \right)\to \left( \text{p} \right),\left( \text{q} \right),\left( \text{r} \right), \left( \text{s} \right)$ are true.
B. Sum of values of determinants corresponding to N matrices is $2+\left( -2 \right)+4+\left( -4 \right)+8+\left( -8 \right)=0$ hence, for $\left( \text{B} \right)\to \text{S}$ is true.
C. Least absolute value determinant of any such matrix as we can see is 2. Hence, $\left| A \right|=2$.
We have to calculate $\left| adj\;\; adj\;\; adj\;\;\left( A \right) \right|$. Since, we know that $\left| adj\;\; adj\;\; adj........adjA\left( r\text{ times} \right) \right|={{\left| A \right|}^{{{\left( n-1 \right)}^{r}}}}$ where n is order of matrix, we can use this to find $\left| adj\; adj\; adj\left( A \right) \right|$
Here, n = 2 because A is a $2\times 2$ matrix.
Also, r = 3 as we can see. Hence, $\left| adj\;\; adj\;\; adj\left( A \right) \right|={{\left| A \right|}^{{{\left( 2-1 \right)}^{3}}}}={{\left| A \right|}^{{{\left( 1 \right)}^{3}}}}=\left| A \right|$
But $\left| A \right|=2$
Hence, $\left| adj\; adj\; adj\left( A \right) \right|=2$
Hence, for $\left( \text{C} \right)\to \left( \text{p} \right)$ is true.
D. As we can see, the least algebraic value of determinant for such a matrix is -8. Therefore, $\left| A \right|=-8$ Possible value of $\left( 4{{A}^{-1}} \right)$ can be calculated as. As we know, $\left| a{{A}^{-1}} \right|={{a}^{n}}\left| {{A}^{-1}} \right|$ here a = 4 and n = 2.
Therefore, $\left| 4{{A}^{-1}} \right|={{4}^{2}}\left| {{A}^{-1}} \right|=16\left| {{A}^{-1}} \right|$
As we know, $\left| {{A}^{-1}} \right|={{\left| A \right|}^{-1}}$ so $\left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}$
But $\left| A \right|=-8$ so $\left| {{A}^{-1}} \right|=\dfrac{1}{-8}$
So $\left| 4{{A}^{-1}} \right|=16\left| {{A}^{-1}} \right|=\dfrac{16}{-8}=-2$
Hence for $\left( \text{D} \right)\to \left( \text{r} \right)$ is true.
Note: Students should carefully determine the values of determinants. They should learn basic formulas for calculating determinants. There is a very high chance of making mistakes in plus-minus signs while calculating determinants. Students should not get confused with the least absolute value; both are completely different. In absolute value, we don't care for signs, hence 2 is the least absolute value. In algebraic value, signs are given importance hence, -8 is the least algebraic value.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE