Answer
Verified
455.7k+ views
Hint: In this question, we have to select the team, so, we will use combination theory. First we will find the total number of ways of selecting 2 girls and 3 boys. After this, we will calculate the ways in which A and B are always included in the same team and finally subtract them to get the answer.
Complete step-by-step answer:
We have 5 girls and 7 boys and our team should consist of 2 girls and 3 boys such that A and B are members of the same team.
So first of all we will calculate the total ways of forming a team consisting of 2 girls and 3 boys.
Total number of ways = ${}^5{C_2}.{}^7{C_3}$
we know that ${}^n{C_r}$is also calculated as, ${}^n{C_r} = \dfrac{{n \times (n - 1)(n - 2)....{\text{to r factors}}}}{{r!}}$
For example - ${}^4{C_2} = \dfrac{{4 \times 3}}{{2!}} = \dfrac{{4 \times 3}}{{2 \times 1}} = 6$
So, we can write:
Total number of ways = ${}^5{C_2}.{}^7{C_3} = \dfrac{5}{2} \times \dfrac{4}{1} \times \dfrac{7}{3} \times \dfrac{6}{2} \times \dfrac{5}{1} = 350$
Now if we subtract the ways in which A and B are always included in the same team from this then we will get our answer.
So when A and B are both included then we take only 1 boy from the remaining 5 boys and 2 girls from 5 girls.
$\therefore $ Number of ways of when A and B are always included = ${}^5{C_1}.{}^5{C_2} = \dfrac{5}{1} \times \dfrac{5}{2} \times \dfrac{4}{1} = 50$.
Therefore, require number of ways = Total number of ways - Number of ways of when A and B are always included = 350 – 50 = 300.
So, the correct answer is “Option B”.
Note: In this type question, it is easy to calculate the total ways and subtract the conditions which are not required. You can also calculate the combination as, ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$, where ${}^n{C_r}$ denotes the number of ways of combinations of n different things taken r at a time. In case of selection, we use combination and in case of selection, we use permutation.
Complete step-by-step answer:
We have 5 girls and 7 boys and our team should consist of 2 girls and 3 boys such that A and B are members of the same team.
So first of all we will calculate the total ways of forming a team consisting of 2 girls and 3 boys.
Total number of ways = ${}^5{C_2}.{}^7{C_3}$
we know that ${}^n{C_r}$is also calculated as, ${}^n{C_r} = \dfrac{{n \times (n - 1)(n - 2)....{\text{to r factors}}}}{{r!}}$
For example - ${}^4{C_2} = \dfrac{{4 \times 3}}{{2!}} = \dfrac{{4 \times 3}}{{2 \times 1}} = 6$
So, we can write:
Total number of ways = ${}^5{C_2}.{}^7{C_3} = \dfrac{5}{2} \times \dfrac{4}{1} \times \dfrac{7}{3} \times \dfrac{6}{2} \times \dfrac{5}{1} = 350$
Now if we subtract the ways in which A and B are always included in the same team from this then we will get our answer.
So when A and B are both included then we take only 1 boy from the remaining 5 boys and 2 girls from 5 girls.
$\therefore $ Number of ways of when A and B are always included = ${}^5{C_1}.{}^5{C_2} = \dfrac{5}{1} \times \dfrac{5}{2} \times \dfrac{4}{1} = 50$.
Therefore, require number of ways = Total number of ways - Number of ways of when A and B are always included = 350 – 50 = 300.
So, the correct answer is “Option B”.
Note: In this type question, it is easy to calculate the total ways and subtract the conditions which are not required. You can also calculate the combination as, ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$, where ${}^n{C_r}$ denotes the number of ways of combinations of n different things taken r at a time. In case of selection, we use combination and in case of selection, we use permutation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE