
Charge on an electron is$1.6 \times {10^{ - 19}}C$. How many electrons are required to accumulate a charge of one Coulomb?
Answer
554.7k+ views
Hint The total amount of charge possessed by the accumulation of a particle in a system is simply the total amount of charge possessed by one particle multiplied by the number of particles accumulated in the system.
In this solution we will be using the following formula;
$\Rightarrow Q = ne$, where $Q$ is the total amount of charge in coulomb, $n$ is the number of electrons (or other particles) contained in the system, $e$ is the amount of charge possessed by an electron.
Complete step by step answer
In general, when a particle with a non zero charge is within a system, the total amount of charge in that system due to the accumulation of the said charge particles is simply the total amount of charge possessed by one particle multiplied by the number of particle accumulated in the system.This is mathematically given as
$\Rightarrow Q = nq$.
Hence, the total amount of charge possessed by the accumulation of a particle in a system is simply the total amount of charge possessed by one particle multiplied by the number of particles accumulated in the system.
For an electron, the equation can become
$\Rightarrow Q = ne$, where $e$ is the charge of an electron.
Hence, to calculate the number of an electron, we have
$\Rightarrow n = \dfrac{Q}{e}$. Then by inserting known values
$\Rightarrow n = \dfrac{1}{{1.6 \times {{10}^{ - 19}}C}} = 6.25 \times {10^{18}}electrons$
$\therefore n = 6.25 \times {10^{18}}electrons$
Note
For clarity, we shall derive the formula $Q = ne$ from a more general case:
In general, the total amount of charge in a system of different charged particles, is the sum of the individual charges. Mathematically,
$\Rightarrow Q = \sum\limits_{i = 1}^n {{q_{1n}}} + \sum\limits_{i = 1}^n {{q_{2n}}} + ... + \sum\limits_{i = 1}^n {{q_{3n}}} $where${q_1},{q_2},...{q_n}$ are the individual charge of different types of particles, and $n$ is the total number of the particular charge.
Since, particles of the same kind have the same number of charge, then it becomes,
$\Rightarrow Q = n{q_1} + n{q_2} + ... + n{q_3}$.
If only one type of particle is in the system or being considered, then, by eliminating all other particles, we have
$\Rightarrow Q = nq$. Hence, the total amount of charge possessed by the accumulation of a particle in a system is simply the total amount of charge possessed by one particle multiplied by the number of particles accumulated in the system.
For electrons, $q = e$, then
$\Rightarrow Q = ne$.
In this solution we will be using the following formula;
$\Rightarrow Q = ne$, where $Q$ is the total amount of charge in coulomb, $n$ is the number of electrons (or other particles) contained in the system, $e$ is the amount of charge possessed by an electron.
Complete step by step answer
In general, when a particle with a non zero charge is within a system, the total amount of charge in that system due to the accumulation of the said charge particles is simply the total amount of charge possessed by one particle multiplied by the number of particle accumulated in the system.This is mathematically given as
$\Rightarrow Q = nq$.
Hence, the total amount of charge possessed by the accumulation of a particle in a system is simply the total amount of charge possessed by one particle multiplied by the number of particles accumulated in the system.
For an electron, the equation can become
$\Rightarrow Q = ne$, where $e$ is the charge of an electron.
Hence, to calculate the number of an electron, we have
$\Rightarrow n = \dfrac{Q}{e}$. Then by inserting known values
$\Rightarrow n = \dfrac{1}{{1.6 \times {{10}^{ - 19}}C}} = 6.25 \times {10^{18}}electrons$
$\therefore n = 6.25 \times {10^{18}}electrons$
Note
For clarity, we shall derive the formula $Q = ne$ from a more general case:
In general, the total amount of charge in a system of different charged particles, is the sum of the individual charges. Mathematically,
$\Rightarrow Q = \sum\limits_{i = 1}^n {{q_{1n}}} + \sum\limits_{i = 1}^n {{q_{2n}}} + ... + \sum\limits_{i = 1}^n {{q_{3n}}} $where${q_1},{q_2},...{q_n}$ are the individual charge of different types of particles, and $n$ is the total number of the particular charge.
Since, particles of the same kind have the same number of charge, then it becomes,
$\Rightarrow Q = n{q_1} + n{q_2} + ... + n{q_3}$.
If only one type of particle is in the system or being considered, then, by eliminating all other particles, we have
$\Rightarrow Q = nq$. Hence, the total amount of charge possessed by the accumulation of a particle in a system is simply the total amount of charge possessed by one particle multiplied by the number of particles accumulated in the system.
For electrons, $q = e$, then
$\Rightarrow Q = ne$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

What is the longest river in Asia? A) Mekong B) Yangtze C) Ganges

In which country is the ancient city of Petra located?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

