
Calculate the hydronium ion \[[{H_3}{O^ + }]\] and hydroxide ion \[[O{H^-}]\] concentration for a $0.0368\,{\text{M}}\,{\text{NaOH}}$
Answer
562.2k+ views
Hint: To answer this question, you should recall the concept of pH scale. The pH scale is a logarithmic scale that is used to measure the acidity or the basicity of a substance. The possible values on the pH scale range from 0 to 14.
The formula used: \[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {O{H^-}} \right]\] and $pH + pOH = 14$
Complete Step by step solution:
The term pH is an abbreviation of potential for hydrogen. Acidic substances have pH values ranging from 1 to 7 and alkaline or basic substances have pH values ranging from 7 to 14. A perfectly neutral substance would have a pH of exactly 7.
The pH of a substance can be expressed as the negative logarithm of the hydrogen ion concentration in that substance. Similarly, the pOH of a substance is the negative logarithm of the hydroxide ion concentration in the substance. These quantities can be expressed via the following formulae:
\[pH{\text{ }} = {\text{ }} - {\text{log}}\left[ {{H^ + }} \right]\] and \[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {O{H^-}} \right]\].
The given $0.0368\,{\text{M}}\,{\text{NaOH}}$ will dissociate to give $0.0368\,$moles of hydroxide ions.
$\left[ {O{H^ - }} \right] = 0.0368{\text{M}}$
This concentration of hydroxide ions can be used to calculate the pOH of solution:
\[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {0.0368} \right] = 1.4341\].
From this, we can calculate the pH using:
$pH + pOH = 14$.
The value of pH will be \[pH = 12.565\].
Now \[pH{\text{ }} = {\text{ }} - {\text{log}}\left[ {{H^ + }} \right]\] can be used to calculate the hydronium concentration:
\[[{H_3}{O^ + }] = 2.71 \times {10^{ - 13}}\].
Note: You should know about the limitations of pH Scale
pH values do not reflect directly the relative strength of acid or bases: A solution of pH = 1 has a hydrogen ion concentration 100 times that of a solution of pH = 3 (not three times).
pH value is zero for \[{\text{1 N}}\] the solution of the strong acid. The concentration of \[{\text{2 N, 3 N, 10 N,}}\] etc. gives negative pH values.
A solution of an acid having very low concentration, say \[{\text{1}}{{\text{0}}^{{\text{ - 8}}}}{\text{N}}\] shows a pH = 8and hence should be basic, but actual pH value is less than 7.
The formula used: \[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {O{H^-}} \right]\] and $pH + pOH = 14$
Complete Step by step solution:
The term pH is an abbreviation of potential for hydrogen. Acidic substances have pH values ranging from 1 to 7 and alkaline or basic substances have pH values ranging from 7 to 14. A perfectly neutral substance would have a pH of exactly 7.
The pH of a substance can be expressed as the negative logarithm of the hydrogen ion concentration in that substance. Similarly, the pOH of a substance is the negative logarithm of the hydroxide ion concentration in the substance. These quantities can be expressed via the following formulae:
\[pH{\text{ }} = {\text{ }} - {\text{log}}\left[ {{H^ + }} \right]\] and \[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {O{H^-}} \right]\].
The given $0.0368\,{\text{M}}\,{\text{NaOH}}$ will dissociate to give $0.0368\,$moles of hydroxide ions.
$\left[ {O{H^ - }} \right] = 0.0368{\text{M}}$
This concentration of hydroxide ions can be used to calculate the pOH of solution:
\[pOH{\text{ }} = {\text{ }} - {\text{log}}\left[ {0.0368} \right] = 1.4341\].
From this, we can calculate the pH using:
$pH + pOH = 14$.
The value of pH will be \[pH = 12.565\].
Now \[pH{\text{ }} = {\text{ }} - {\text{log}}\left[ {{H^ + }} \right]\] can be used to calculate the hydronium concentration:
\[[{H_3}{O^ + }] = 2.71 \times {10^{ - 13}}\].
Note: You should know about the limitations of pH Scale
pH values do not reflect directly the relative strength of acid or bases: A solution of pH = 1 has a hydrogen ion concentration 100 times that of a solution of pH = 3 (not three times).
pH value is zero for \[{\text{1 N}}\] the solution of the strong acid. The concentration of \[{\text{2 N, 3 N, 10 N,}}\] etc. gives negative pH values.
A solution of an acid having very low concentration, say \[{\text{1}}{{\text{0}}^{{\text{ - 8}}}}{\text{N}}\] shows a pH = 8and hence should be basic, but actual pH value is less than 7.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

