
Calculate the electrode potential at ${25^0}{\text{C}}$of $C{r^{3 + }}$, $C{r_2}O_7^{2 - }$ electrode at $pOH = 11$ in a solution of $0.01{\text{M}}$ both $C{r^{3 + }}$ and $C{r_2}O_7^{2 - }$
$C{r_2}O_7^{2 - } + 14{H^ + } + 6e \to 2C{r^{3 + }} + 7{H_2}O$
${E^0} = 1.33V$
Answer
553.5k+ views
Hint:To answer this question, you must recall the Nernst Equation. Nernst equation gives a relation between the EMF, temperature and the concentrations of chemical species of a redox reaction.
Formula used: For a reaction, $A + B \to C + D$
The Nernst equation is written as
$E = {E^0} - \dfrac{{RT}}{{nF}}\ln \dfrac{{\left[ A \right]\left[ B \right]}}{{\left[ C \right]\left[ D \right]}}$
Where, $E$ denotes the EMF of the electrochemical cell
${E^0}$ denotes the standard cell potential of the redox reaction
$n$ denotes the number of electrons transferred during the redox reaction
$F$ denotes Faraday constant
$R$ denotes the gas constant
$T$ denotes the temperature of the reaction
Complete step by step answer:
The given cell reaction in the question is $C{r_2}O_7^{2 - } + 14{H^ + } + 6e \to 2C{r^{3 + }} + 7{H_2}O$
We are given the concentrations of the ions in the solution as $\left[ {C{r_2}O_7^{2 - }} \right] = \left[ {C{r^{3 + }}} \right] = 0.01{\text{M}}$
We are also given $pOH = 11$ and we know that $pH + pOH = 14$
So, we get, $pH = 3$ which means $\left[ {{H^ + }} \right] = {10^{ - 3}}{\text{M}}$
Now using the Nernst Equation for the reaction and substituting the values, we get,
$E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left[ {C{r^{3 + }}} \right]}^2}}}{{\left[ {C{r_2}O_7^{2 - }} \right]{{\left[ {{H^ + }} \right]}^{14}}}}$
Substituting the values:
$ \Rightarrow E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left( {0.01} \right)}^2}}}{{\left( {0.01} \right){{\left( {{{10}^{ - 3}}} \right)}^{14}}}}$
$\therefore E = 0.936{\text{ Volts}}$
Note:
The Nernst equation helps to calculate the extent of reaction occurring between two redox systems and is thus, generally used to determine if a particular reaction would go to completion or not. At equilibrium, the EMFs of the two half cells are equal. This enables us to calculate the equilibrium constant and hence, the extent of the reaction.
Limitations of Nernst Equation: Nernst equation can be expressed directly in the terms of concentrations of constituents in dilute solutions. But at higher concentrations, the true activities of the ions become significant and therefore, must be used. This complicates the Nernst equation, as estimation of these non-ideal activities of ions requires complex experimental measurements. Also, the Nernst equation applies only when there is no net current flow through the electrode.
Formula used: For a reaction, $A + B \to C + D$
The Nernst equation is written as
$E = {E^0} - \dfrac{{RT}}{{nF}}\ln \dfrac{{\left[ A \right]\left[ B \right]}}{{\left[ C \right]\left[ D \right]}}$
Where, $E$ denotes the EMF of the electrochemical cell
${E^0}$ denotes the standard cell potential of the redox reaction
$n$ denotes the number of electrons transferred during the redox reaction
$F$ denotes Faraday constant
$R$ denotes the gas constant
$T$ denotes the temperature of the reaction
Complete step by step answer:
The given cell reaction in the question is $C{r_2}O_7^{2 - } + 14{H^ + } + 6e \to 2C{r^{3 + }} + 7{H_2}O$
We are given the concentrations of the ions in the solution as $\left[ {C{r_2}O_7^{2 - }} \right] = \left[ {C{r^{3 + }}} \right] = 0.01{\text{M}}$
We are also given $pOH = 11$ and we know that $pH + pOH = 14$
So, we get, $pH = 3$ which means $\left[ {{H^ + }} \right] = {10^{ - 3}}{\text{M}}$
Now using the Nernst Equation for the reaction and substituting the values, we get,
$E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left[ {C{r^{3 + }}} \right]}^2}}}{{\left[ {C{r_2}O_7^{2 - }} \right]{{\left[ {{H^ + }} \right]}^{14}}}}$
Substituting the values:
$ \Rightarrow E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left( {0.01} \right)}^2}}}{{\left( {0.01} \right){{\left( {{{10}^{ - 3}}} \right)}^{14}}}}$
$\therefore E = 0.936{\text{ Volts}}$
Note:
The Nernst equation helps to calculate the extent of reaction occurring between two redox systems and is thus, generally used to determine if a particular reaction would go to completion or not. At equilibrium, the EMFs of the two half cells are equal. This enables us to calculate the equilibrium constant and hence, the extent of the reaction.
Limitations of Nernst Equation: Nernst equation can be expressed directly in the terms of concentrations of constituents in dilute solutions. But at higher concentrations, the true activities of the ions become significant and therefore, must be used. This complicates the Nernst equation, as estimation of these non-ideal activities of ions requires complex experimental measurements. Also, the Nernst equation applies only when there is no net current flow through the electrode.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

