Answer

Verified

384.6k+ views

**Hint:**To answer this question, you must recall the Nernst Equation. Nernst equation gives a relation between the EMF, temperature and the concentrations of chemical species of a redox reaction.

**Formula used:**For a reaction, $A + B \to C + D$

The Nernst equation is written as

$E = {E^0} - \dfrac{{RT}}{{nF}}\ln \dfrac{{\left[ A \right]\left[ B \right]}}{{\left[ C \right]\left[ D \right]}}$

Where, $E$ denotes the EMF of the electrochemical cell

${E^0}$ denotes the standard cell potential of the redox reaction

$n$ denotes the number of electrons transferred during the redox reaction

$F$ denotes Faraday constant

$R$ denotes the gas constant

$T$ denotes the temperature of the reaction

**Complete step by step answer:**

The given cell reaction in the question is $C{r_2}O_7^{2 - } + 14{H^ + } + 6e \to 2C{r^{3 + }} + 7{H_2}O$

We are given the concentrations of the ions in the solution as $\left[ {C{r_2}O_7^{2 - }} \right] = \left[ {C{r^{3 + }}} \right] = 0.01{\text{M}}$

We are also given $pOH = 11$ and we know that $pH + pOH = 14$

So, we get, $pH = 3$ which means $\left[ {{H^ + }} \right] = {10^{ - 3}}{\text{M}}$

Now using the Nernst Equation for the reaction and substituting the values, we get,

$E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left[ {C{r^{3 + }}} \right]}^2}}}{{\left[ {C{r_2}O_7^{2 - }} \right]{{\left[ {{H^ + }} \right]}^{14}}}}$

Substituting the values:

$ \Rightarrow E = 1.33 - \dfrac{{0.059}}{6}\ln \dfrac{{{{\left( {0.01} \right)}^2}}}{{\left( {0.01} \right){{\left( {{{10}^{ - 3}}} \right)}^{14}}}}$

**$\therefore E = 0.936{\text{ Volts}}$**

**Note:**

The Nernst equation helps to calculate the extent of reaction occurring between two redox systems and is thus, generally used to determine if a particular reaction would go to completion or not. At equilibrium, the EMFs of the two half cells are equal. This enables us to calculate the equilibrium constant and hence, the extent of the reaction.

Limitations of Nernst Equation: Nernst equation can be expressed directly in the terms of concentrations of constituents in dilute solutions. But at higher concentrations, the true activities of the ions become significant and therefore, must be used. This complicates the Nernst equation, as estimation of these non-ideal activities of ions requires complex experimental measurements. Also, the Nernst equation applies only when there is no net current flow through the electrode.

Recently Updated Pages

Which of the following is the correct formula of Gypsum class 10 chemistry CBSE

Biogas is a mixture of A Methane + CO 2 B Methane + class 10 chemistry CBSE

Graphite is a good conductor of electricity due to class 10 chemistry CBSE

What is the number of valence electrons in the Clion class 10 chemistry CBSE

Which oxidation state for nitrogen is correctly given class 10 chemistry CBSE

Why do we store silver chloride in dark colored bo class 10 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE