Answer

Verified

408k+ views

**Hint:**Here in this question the given function is a function of inverse trigonometry function. To find the value of this function by using Maclaurin series or expansion, it formula can be defined as \[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\] further solve this formula for \[{\tan ^{ - 1}}\] on by simplification we get the required result.

**Complete step by step solution:**

The given function is an inverse trigonometry function. The basic inverse trigonometric functions are used to find the missing angles in right triangles.

To solve the given inverse trigonometry function by using a Maclaurin series or expansion.

Maclaurin series is a function that has an expansion series that gives the sum of derivatives of that function. The Maclaurin series of a function \[f\left( x \right)\] up to order n may be found using series \[\left[ {f,{\text{ }}x,{\text{ }}0,{\text{ }}n{\text{ }}} \right] \] .

The Maclaurin series is a special case of Taylor series when \[x = 0\] . The Maclaurin series is given by

\[f(x) = f({x_0}) + f'({x_0})\left( {x - {x_0}} \right) + \dfrac{{f''({x_0})}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f'''({x_0})}}{{3!}}{\left( {x - {x_0}} \right)^3} + \,\, \cdot \cdot \cdot \]

In general formula of Maclaurin series is

\[\Rightarrow f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\]

Where \[f'({x_0})\] , \[f''({x_0})\] , \[f'''({x_0})\] , … are the successive differentials when \[{x_0} = 0\] .

Consider the given inverse tan function \[{\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right)\]

Before going to solve this, first find the Maclaurin series of \[{\tan ^{ - 1}}\left( x \right)\] when \[{x_0} = 0\] .

So let’s begin :

\[\Rightarrow f(x) = {\tan ^{ - 1}}\left( x \right)\]

\[\Rightarrow f\left( 0 \right) = 0\]

\[\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}\]

\[\Rightarrow f'\left( 0 \right) = 1\]

\[\Rightarrow f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{{ - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\]

\[f''\left( 0 \right) = 0\]

Continue this for several values.

Hence the Maclaurin series of \[{\tan ^{ - 1}}\left( x \right)\] is given by

\[\Rightarrow f(x) = {\tan ^{ - 1}}\left( x \right) = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot \cdot \cdot \]

In general

\[\Rightarrow {\tan ^{ - 1}}\left( x \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}}} \]

For the given function replace \[x\] by \[ - \dfrac{1}{2}\] , then the Maclaurin series of \[\Rightarrow{\tan ^{ - 1}}\left( x \right)\] becomes

\[\Rightarrow {\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2} - \dfrac{{{{\left( { - \dfrac{1}{2}} \right)}^3}}}{3} + \dfrac{{{{\left( { - \dfrac{1}{2}} \right)}^5}}}{5} + \cdot \cdot \cdot \]

\[\Rightarrow {\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2} + \dfrac{1}{{{2^3} \cdot 3}} - \dfrac{1}{{{2^5} \cdot 5}} + \cdot \cdot \cdot \]

\[\Rightarrow {\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2} + \dfrac{1}{{8 \cdot 3}} - \dfrac{1}{{32 \cdot 5}} + \cdot \cdot \cdot \]

\[\Rightarrow {\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2} + \dfrac{1}{{24}} - \dfrac{1}{{160}} + \cdot \cdot \cdot \]

\[{\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - 0.5 + 0.04166 - 0.00625 + \cdot \cdot \cdot \]

\[\Rightarrow {\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = - 0.46459...\]

Hence the value of \[{\tan ^{ - 1}}\left( { - \dfrac{1}{2}} \right)\] is \[ - 0.465\] rounded to the third decimal figure.

**So, the correct answer is “- 0.465”.**

**Note**: We can calculate the inverse of a trigonometry ratio by the help of a tale of trigonometry ratios for the standard angles. or we can determine the inverse value of tan we use the maclaurin series expansion formula. Hence we substitute the value of x in the given formula and hence we obtain the solution for the question.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths