
At NTP the density of a gas is $1.3kg/{m^3}$and the velocity of sound propagation in the gas is 330m/s. The degree of freedom of the gas molecule is:
1) 3
2) 5
3) 6
4) 7
Answer
512.1k+ views
Hint:- Here at NTP the pressure P of gas is$1.015 \times {10^5}KN/{m^2}$. We have been given a density of gas$(\rho = 1.3kg/{m^3})$, velocity of sound “v = 330m/s”. Apply the formula for speed of sound$v = \sqrt {\dfrac{B}{\rho }} $; where:
B = Bulk Modulus = $\gamma P$($\gamma $= Adiabatic constant, P = Pressure), $\rho $= Density of gas, v = velocity of sound. Then equate$\gamma = 1 + \dfrac{2}{f}$; where: f = degree of freedom. Put the given value and solve for the unknown.
Complete step-by-step solution
The speed of the sound wave is given by:
$v = \sqrt {\dfrac{B}{\rho }} $;
Put$B = \gamma P$;
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $;
To remove the square roots take square on both sides of the equation;
${v^2} = \dfrac{{\gamma P}}{\rho }$;
Take pressure and the density on LHS and solve for$\gamma $.
$\gamma = \dfrac{{{v^2}\rho }}{P}$;
Put the necessary value in the above equation and solve,
$\gamma = \dfrac{{330 \times 330 \times 1.3}}{{1.015 \times {{10}^5}}}$;
The value comes out to be:
$\gamma = 1.4$;
For finding the degree of freedom put the value of $\gamma $in the below given equation:
$\gamma = 1 + \dfrac{2}{f}$;
Solve for degree of freedom f.
$1.4 = 1 + \dfrac{2}{f}$
Simplify the equation
\[1.4f = f + 2\]
\[0.4f = 2\];
Take “0.4” to RHS:
\[f = \dfrac{2}{{0.4}}\];
\[f = \dfrac{{2 \times 10}}{4}\];
The degree of freedom is:
\[f = 5\];
Final Answer: Option “2” is correct. The degree of freedom of the gas molecule is 5.
Note:- Here we need to find the relation between the speed of the sound, pressure and the density. Put the necessary given values and solve for the adiabatic constant$\gamma $. After finding the value of adiabatic constant put the value in the equation$\gamma = 1 + \dfrac{2}{f}$and solve for the degree of freedom f.
B = Bulk Modulus = $\gamma P$($\gamma $= Adiabatic constant, P = Pressure), $\rho $= Density of gas, v = velocity of sound. Then equate$\gamma = 1 + \dfrac{2}{f}$; where: f = degree of freedom. Put the given value and solve for the unknown.
Complete step-by-step solution
The speed of the sound wave is given by:
$v = \sqrt {\dfrac{B}{\rho }} $;
Put$B = \gamma P$;
$v = \sqrt {\dfrac{{\gamma P}}{\rho }} $;
To remove the square roots take square on both sides of the equation;
${v^2} = \dfrac{{\gamma P}}{\rho }$;
Take pressure and the density on LHS and solve for$\gamma $.
$\gamma = \dfrac{{{v^2}\rho }}{P}$;
Put the necessary value in the above equation and solve,
$\gamma = \dfrac{{330 \times 330 \times 1.3}}{{1.015 \times {{10}^5}}}$;
The value comes out to be:
$\gamma = 1.4$;
For finding the degree of freedom put the value of $\gamma $in the below given equation:
$\gamma = 1 + \dfrac{2}{f}$;
Solve for degree of freedom f.
$1.4 = 1 + \dfrac{2}{f}$
Simplify the equation
\[1.4f = f + 2\]
\[0.4f = 2\];
Take “0.4” to RHS:
\[f = \dfrac{2}{{0.4}}\];
\[f = \dfrac{{2 \times 10}}{4}\];
The degree of freedom is:
\[f = 5\];
Final Answer: Option “2” is correct. The degree of freedom of the gas molecule is 5.
Note:- Here we need to find the relation between the speed of the sound, pressure and the density. Put the necessary given values and solve for the adiabatic constant$\gamma $. After finding the value of adiabatic constant put the value in the equation$\gamma = 1 + \dfrac{2}{f}$and solve for the degree of freedom f.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
