
Any tangent to the curve \[y = 2{x^7} + 3x + 5\],
A. Is parallel to x-axis
B. Is parallel to y-axis
C. Makes an acute angle with x-axis
D. Makes an obtuse angle with x-axis
Answer
579.3k+ views
Hint: This problem can be solved by using derivatives. Slope of the Tangent line of the curve will be obtained. Then based on the value of slope, angle of the tangent with the x-axis can be easily computed.
Complete step-by-step answer:
Equation of the curve given in the question is,
\[y = 2{x^7} + 3x + 5\]
Now, its first derivative will be done with respect to x, to get the value of $\dfrac{{dy}}{{dx}}$.
The given expression has three terms each with a simple exponential value of variable x or some constant.
So, $
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7} + 3x + 5) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7}) + \dfrac{d}{{dx}}(3x) + \dfrac{d}{{dx}}(5)...(1) \\
\\
$
We know that,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Thus by putting value of n as 7 we get,
$\dfrac{d}{{dx}}({x^7}) = 7{x^6}$
And similarly by putting value of n as 1 we get,
$\dfrac{d}{{dx}}({x^1}) = {x^0} = 1$
Also the derivative of the constant term is always 0.
Now, putting all above values in equation (1), we get
$
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7}) + \dfrac{d}{{dx}}(3x) + \dfrac{d}{{dx}}(5) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2 \times 7{x^6} + 3 \times 1 + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = 14{x^6} + 3 \\
\\
$
The clear value of $\dfrac{{dy}}{{dx}}$ will be positive as, ${x^6}$ is always a positive for any real value of x.
Thus $\tan \theta $ will also be positive. So, $\theta $ means the angle of the tangent line with x-axis will lie in the first quadrant.
Thus, the tangent to the curve will definitely make an acute angle with the x-axis.
So, the correct answer is “Option C”.
Note: All trigonometric ratios are having specific properties of their values based on their quadrant. This property helps a lot to find the possible range of values of the angle by knowing the positive or negative signs of the trigonometric ratios. Also the first derivative of any curve will give the slope of the tangent line of the curve. So, in the above problem we have used these properties to get the correct solution.
Complete step-by-step answer:
Equation of the curve given in the question is,
\[y = 2{x^7} + 3x + 5\]
Now, its first derivative will be done with respect to x, to get the value of $\dfrac{{dy}}{{dx}}$.
The given expression has three terms each with a simple exponential value of variable x or some constant.
So, $
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7} + 3x + 5) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7}) + \dfrac{d}{{dx}}(3x) + \dfrac{d}{{dx}}(5)...(1) \\
\\
$
We know that,
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Thus by putting value of n as 7 we get,
$\dfrac{d}{{dx}}({x^7}) = 7{x^6}$
And similarly by putting value of n as 1 we get,
$\dfrac{d}{{dx}}({x^1}) = {x^0} = 1$
Also the derivative of the constant term is always 0.
Now, putting all above values in equation (1), we get
$
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{x^7}) + \dfrac{d}{{dx}}(3x) + \dfrac{d}{{dx}}(5) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2 \times 7{x^6} + 3 \times 1 + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = 14{x^6} + 3 \\
\\
$
The clear value of $\dfrac{{dy}}{{dx}}$ will be positive as, ${x^6}$ is always a positive for any real value of x.
Thus $\tan \theta $ will also be positive. So, $\theta $ means the angle of the tangent line with x-axis will lie in the first quadrant.
Thus, the tangent to the curve will definitely make an acute angle with the x-axis.
So, the correct answer is “Option C”.
Note: All trigonometric ratios are having specific properties of their values based on their quadrant. This property helps a lot to find the possible range of values of the angle by knowing the positive or negative signs of the trigonometric ratios. Also the first derivative of any curve will give the slope of the tangent line of the curve. So, in the above problem we have used these properties to get the correct solution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

