
Angle between the asymptotes of a hyperbola is $30^\circ $ then $e = $
A. $\sqrt 6 $
B. $\sqrt 2 $
C. $\sqrt 6 - \sqrt 2 $
D. $\sqrt 6 - \sqrt 3 $
Answer
445.5k+ views
Hint: Here, we will use the given angles and the asymptotes of a hyperbola to form a quadratic equation and solve it further to find the value of the variable. Then use this value we will find the required value of eccentricity of the given hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone.
Formula Used:
1. Equation of a hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
2. Quadratic formula can be written as $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
3. Eccentricity of hyperbola, $e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} $
Complete step-by-step answer:
Equation of a hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
The asymptotes of a hyperbola are $y = \pm \dfrac{b}{a}x$
According to the question, angle between the asymptotes of a hyperbola is $30^\circ $
Hence, we get,
$\tan 30^\circ = \dfrac{{\dfrac{b}{a} + \dfrac{b}{a}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{\dfrac{{2b}}{a}}}{{\dfrac{{{a^2} - {b^2}}}{{{a^2}}}}} = \dfrac{{2ab}}{{{a^2} - {b^2}}}$
Using the trigonometric table, we know that $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2ab}}{{{a^2} - {b^2}}}$
Dividing numerator and denominator by ${a^2}$, we get,
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{\dfrac{{2ab}}{{{a^2}}}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{2\left( {\dfrac{b}{a}} \right)}}{{1 - {{\left( {\dfrac{b}{a}} \right)}^2}}}$
Now, substitute $\left( {\dfrac{b}{a}} \right) = x$
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2x}}{{1 - {x^2}}}$
Now, cross multiplying, we get
$ \Rightarrow 1 - {x^2} = 2\sqrt 3 x$
This can be written as:
$ \Rightarrow {x^2} + 2\sqrt 3 x - 1 = 0$
Comparing this quadratic equation with $a{x^2} + bx + c = 0$, we have $a = 1$, $b = 2\sqrt 3 $and $c = - 1$
Hence, substituting these in quadratic formula, we get,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
Solving further, we get,
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2} = \dfrac{{ - 2\sqrt 3 \pm \sqrt {16} }}{2} = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
Dividing the numerator and denominator by 2, we get
$ \Rightarrow x = - \sqrt 3 \pm 2$
But, $x$can’t be negative
Therefore, we get,
$ \Rightarrow x = 2 - \sqrt 3 $
Hence eccentricity, $e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} = \sqrt {1 + {x^2}} $
Using the value $x = 2 - \sqrt 3 $, we get,
$e = \sqrt {1 + {{\left( {2 - \sqrt 3 } \right)}^2}} $
Now, using the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = \sqrt {8 - 4\sqrt 3 } $
$ \Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = 2\sqrt {2 - \sqrt 3 } $
Hence, we get,
$ \Rightarrow e = \sqrt 6 - \sqrt 2 $
Hence, option C is the correct answer.
Note:
The plane does not have to be parallel to the axis of the cone for the hyperbola to be symmetrical. A hyperbola will be symmetrical in any case and every hyperbola has two asymptotes. A hyperbola with a horizontal transverse axis and center at $\left( {h,k} \right)$ has one asymptote with equation \[y = k + \left( {x - h} \right)\]and the other with equation \[y = k - \left( {x - h} \right)\]. Also, the eccentricity of a circle is zero. The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. The eccentricity of a parabola is 1 and the eccentricity of a hyperbola is greater than 1.
Formula Used:
1. Equation of a hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
2. Quadratic formula can be written as $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
3. Eccentricity of hyperbola, $e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} $
Complete step-by-step answer:
Equation of a hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$
The asymptotes of a hyperbola are $y = \pm \dfrac{b}{a}x$
According to the question, angle between the asymptotes of a hyperbola is $30^\circ $
Hence, we get,
$\tan 30^\circ = \dfrac{{\dfrac{b}{a} + \dfrac{b}{a}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{\dfrac{{2b}}{a}}}{{\dfrac{{{a^2} - {b^2}}}{{{a^2}}}}} = \dfrac{{2ab}}{{{a^2} - {b^2}}}$
Using the trigonometric table, we know that $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2ab}}{{{a^2} - {b^2}}}$
Dividing numerator and denominator by ${a^2}$, we get,
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{\dfrac{{2ab}}{{{a^2}}}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{2\left( {\dfrac{b}{a}} \right)}}{{1 - {{\left( {\dfrac{b}{a}} \right)}^2}}}$
Now, substitute $\left( {\dfrac{b}{a}} \right) = x$
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2x}}{{1 - {x^2}}}$
Now, cross multiplying, we get
$ \Rightarrow 1 - {x^2} = 2\sqrt 3 x$
This can be written as:
$ \Rightarrow {x^2} + 2\sqrt 3 x - 1 = 0$
Comparing this quadratic equation with $a{x^2} + bx + c = 0$, we have $a = 1$, $b = 2\sqrt 3 $and $c = - 1$
Hence, substituting these in quadratic formula, we get,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
Solving further, we get,
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2} = \dfrac{{ - 2\sqrt 3 \pm \sqrt {16} }}{2} = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
Dividing the numerator and denominator by 2, we get
$ \Rightarrow x = - \sqrt 3 \pm 2$
But, $x$can’t be negative
Therefore, we get,
$ \Rightarrow x = 2 - \sqrt 3 $
Hence eccentricity, $e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} = \sqrt {1 + {x^2}} $
Using the value $x = 2 - \sqrt 3 $, we get,
$e = \sqrt {1 + {{\left( {2 - \sqrt 3 } \right)}^2}} $
Now, using the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = \sqrt {8 - 4\sqrt 3 } $
$ \Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = 2\sqrt {2 - \sqrt 3 } $
Hence, we get,
$ \Rightarrow e = \sqrt 6 - \sqrt 2 $
Hence, option C is the correct answer.
Note:
The plane does not have to be parallel to the axis of the cone for the hyperbola to be symmetrical. A hyperbola will be symmetrical in any case and every hyperbola has two asymptotes. A hyperbola with a horizontal transverse axis and center at $\left( {h,k} \right)$ has one asymptote with equation \[y = k + \left( {x - h} \right)\]and the other with equation \[y = k - \left( {x - h} \right)\]. Also, the eccentricity of a circle is zero. The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. The eccentricity of a parabola is 1 and the eccentricity of a hyperbola is greater than 1.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
