
An object A of mass 1kg is projected vertically upward with a speed of$20m/s$. At the same moment another object B of mass 3kg, which is initially above the object A, is dropped from a height h=20m. The two point-like objects (A and B) collide and stick to each other. The kinetic energy is K (in J) of the combined mass just after collision, find the value of$\dfrac{K}{25}$ .
Answer
550.8k+ views
Hint: You could apply equations of motion separately for both the given objects and thus find the time taken to collide and also their velocities just before collision. Now you could apply the law of conservation of momentum to the given collision and then find the velocity of the combined mass after collision. Now you could substitute this velocity in the expression for kinetic energy and then get required value.
Formulae used:
Equations of motion,
$s=ut+\dfrac{1}{2}g{{t}^{2}}$
${{v}^{2}}-{{u}^{2}}=2as$
$v=u+at$
Complete Step by step solution:
In the question, we are given an object A of mass 1kg that is projected upwards at $20m/s$ and another object B of mass 3kg that was initially above A is dropped from h=20m. These two objects are said to stick together after colliding with each other. We are asked to find the value of $\dfrac{K}{25}$ if K is the kinetic energy of the combined mass after collision.
Let us assume that object A reaches a height x just before collision and object B travels a distance y downwards just before the collision. Let t be the time at which collision takes place, then,
For the case of object B,
$s=ut+\dfrac{1}{2}g{{t}^{2}}$
$y=0.5g{{t}^{2}}$ ……………………………………… (1)
Let us take, $g=10m{{s}^{-2}}$
$y=5m$ ……………………………………… (2)
Now for the case of object A,
$x=20t-0.5g{{t}^{2}}$
From (1),
$x=20t-y$
$x+y=20t$ …………………………. (3)
But sum of x and y will be the total height 20m, that is,
$x+y=20$ ……………………………………….. (4)
Comparing this with (3) we get,
$t=1s$ ……………………………………………… (5)
Therefore, we found the time taken for collision to be 1s.
Also, by substituting (2) in (4) gives,
$x=20-5=15m$ ………………………………….. (6)
Now, we have the equation of motion given by,
${{v}^{2}}-{{u}^{2}}=2as$
As the object B is dropped B’s initial velocity will be zero, so,
$u=0$
$\Rightarrow {{v}^{2}}-0=2\times 10\times 5$
$\Rightarrow {{v}^{2}}=100$
$\therefore {{v}_{B}}=10m{{s}^{-1}}$
We have another equation of motion given by,
$v=u+at$
So for object A,
$v=20-10\times 1$
$\therefore {{v}_{A}}=10m{{s}^{-1}}$
On applying law of conservation of angular momentum for the collision,
${{m}_{A}}{{v}_{A}}-{{m}_{B}}{{v}_{B}}=\left( {{m}_{A}}+{{m}_{B}} \right)v$
$\Rightarrow v=\dfrac{{{m}_{A}}{{v}_{A}}-{{m}_{B}}{{v}_{B}}}{{{m}_{A}}+{{m}_{B}}}$
$\Rightarrow v=\dfrac{1\times 10-3\times 10}{1+3}$
$\Rightarrow v=\dfrac{-20}{4}$
$\therefore v=-5m{{s}^{-1}}$
So the velocity of the combined mass is found to be $-5m{{s}^{-1}}$.
Now let us find the kinetic energy of the combined mass after collision.
$K=\dfrac{1}{2}\left( {{m}_{A}}+{{m}_{B}} \right){{v}^{2}}$
$\Rightarrow K=\dfrac{1}{2}\left( 4 \right){{5}^{2}}$
$\therefore K=50J$
But we are asked to find the value of $\dfrac{K}{25}$ .
$\dfrac{K}{25}=\dfrac{50}{25}$
$\therefore \dfrac{K}{25}=2J$
Note:
Though solving numerical problems for one dimensional motion is pretty easy, one should be careful with the directions and hence the sign. Also, after collision both objects are said to stick together and hence we have the substitute accordingly for the law of conservation of momentum. And we have taken $g=10m{{s}^{-1}}$.
Formulae used:
Equations of motion,
$s=ut+\dfrac{1}{2}g{{t}^{2}}$
${{v}^{2}}-{{u}^{2}}=2as$
$v=u+at$
Complete Step by step solution:
In the question, we are given an object A of mass 1kg that is projected upwards at $20m/s$ and another object B of mass 3kg that was initially above A is dropped from h=20m. These two objects are said to stick together after colliding with each other. We are asked to find the value of $\dfrac{K}{25}$ if K is the kinetic energy of the combined mass after collision.
Let us assume that object A reaches a height x just before collision and object B travels a distance y downwards just before the collision. Let t be the time at which collision takes place, then,
For the case of object B,
$s=ut+\dfrac{1}{2}g{{t}^{2}}$
$y=0.5g{{t}^{2}}$ ……………………………………… (1)
Let us take, $g=10m{{s}^{-2}}$
$y=5m$ ……………………………………… (2)
Now for the case of object A,
$x=20t-0.5g{{t}^{2}}$
From (1),
$x=20t-y$
$x+y=20t$ …………………………. (3)
But sum of x and y will be the total height 20m, that is,
$x+y=20$ ……………………………………….. (4)
Comparing this with (3) we get,
$t=1s$ ……………………………………………… (5)
Therefore, we found the time taken for collision to be 1s.
Also, by substituting (2) in (4) gives,
$x=20-5=15m$ ………………………………….. (6)
Now, we have the equation of motion given by,
${{v}^{2}}-{{u}^{2}}=2as$
As the object B is dropped B’s initial velocity will be zero, so,
$u=0$
$\Rightarrow {{v}^{2}}-0=2\times 10\times 5$
$\Rightarrow {{v}^{2}}=100$
$\therefore {{v}_{B}}=10m{{s}^{-1}}$
We have another equation of motion given by,
$v=u+at$
So for object A,
$v=20-10\times 1$
$\therefore {{v}_{A}}=10m{{s}^{-1}}$
On applying law of conservation of angular momentum for the collision,
${{m}_{A}}{{v}_{A}}-{{m}_{B}}{{v}_{B}}=\left( {{m}_{A}}+{{m}_{B}} \right)v$
$\Rightarrow v=\dfrac{{{m}_{A}}{{v}_{A}}-{{m}_{B}}{{v}_{B}}}{{{m}_{A}}+{{m}_{B}}}$
$\Rightarrow v=\dfrac{1\times 10-3\times 10}{1+3}$
$\Rightarrow v=\dfrac{-20}{4}$
$\therefore v=-5m{{s}^{-1}}$
So the velocity of the combined mass is found to be $-5m{{s}^{-1}}$.
Now let us find the kinetic energy of the combined mass after collision.
$K=\dfrac{1}{2}\left( {{m}_{A}}+{{m}_{B}} \right){{v}^{2}}$
$\Rightarrow K=\dfrac{1}{2}\left( 4 \right){{5}^{2}}$
$\therefore K=50J$
But we are asked to find the value of $\dfrac{K}{25}$ .
$\dfrac{K}{25}=\dfrac{50}{25}$
$\therefore \dfrac{K}{25}=2J$
Note:
Though solving numerical problems for one dimensional motion is pretty easy, one should be careful with the directions and hence the sign. Also, after collision both objects are said to stick together and hence we have the substitute accordingly for the law of conservation of momentum. And we have taken $g=10m{{s}^{-1}}$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

