Answer
Verified
435.9k+ views
Hint:Here,we are going to apply the concept of alternating current as well as direct current and determine the resultant current by adding the AC and DC component of the current. Use the formula for the rms value of the current to determine the rms current.
Formula used:
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, \[{I_{rms}}\] is the rms value of the resultant current and T is the period.
Complete step by step answer:
The resultant value of the current is the sum of AC and DC currents.
\[\Rightarrow I = {I_{DC}} + {I_{AC}}\]
\[ \Rightarrow I = 8 + 6\sin \omega t\]
The rms value of the resultant current is given as,
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, T is the period.
Substitute the resultant value of the current in the above equation.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{{\left( {8 + 6\sin \omega t} \right)}^2}dt} }}{T}\]
Solve the above equation further as follows.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36{{\sin }^2}\omega t + 96\sin \omega t} \right)dt} }}{T}\]
Use, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\].
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right) + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 18 - 18\cos 2\omega t + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82t + 18\dfrac{{\sin \omega t}}{{2\omega }} + 96\dfrac{{\cos \omega t}}{\omega }} \right)_0^T}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin \omega T}}{{2\omega }} + 96\dfrac{{\cos \omega T}}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
Use the relation, \[\omega = \dfrac{{2\pi }}{T}\] in the above equation. We get,
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin 2\pi }}{{2\omega }} + 96\dfrac{{\cos 2\pi }}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + \dfrac{{96}}{\omega }} \right) - \left( {\dfrac{{96}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = 82\]
Therefore,
\[\Rightarrow{I_{rms}} = 9.05\,A\]
So, the correct answer is option (A).
Note: The integration of \[\sin \theta \] is \[ - \cos \theta \] and integration of \[\cos \theta \] is \[\sin \theta \]. Also, remember \[\cos n\pi = {\left( { - 1} \right)^n}\].Also remember that alternating current can be defined as a current that changes its magnitude and polarity at regular intervals of time. It can also be defined as an electrical current which repeatedly changes or reverses its direction opposite to that of Direct Current or DC which always flows in a single direction.
Formula used:
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, \[{I_{rms}}\] is the rms value of the resultant current and T is the period.
Complete step by step answer:
The resultant value of the current is the sum of AC and DC currents.
\[\Rightarrow I = {I_{DC}} + {I_{AC}}\]
\[ \Rightarrow I = 8 + 6\sin \omega t\]
The rms value of the resultant current is given as,
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, T is the period.
Substitute the resultant value of the current in the above equation.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{{\left( {8 + 6\sin \omega t} \right)}^2}dt} }}{T}\]
Solve the above equation further as follows.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36{{\sin }^2}\omega t + 96\sin \omega t} \right)dt} }}{T}\]
Use, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\].
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right) + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 18 - 18\cos 2\omega t + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82t + 18\dfrac{{\sin \omega t}}{{2\omega }} + 96\dfrac{{\cos \omega t}}{\omega }} \right)_0^T}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin \omega T}}{{2\omega }} + 96\dfrac{{\cos \omega T}}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
Use the relation, \[\omega = \dfrac{{2\pi }}{T}\] in the above equation. We get,
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin 2\pi }}{{2\omega }} + 96\dfrac{{\cos 2\pi }}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + \dfrac{{96}}{\omega }} \right) - \left( {\dfrac{{96}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = 82\]
Therefore,
\[\Rightarrow{I_{rms}} = 9.05\,A\]
So, the correct answer is option (A).
Note: The integration of \[\sin \theta \] is \[ - \cos \theta \] and integration of \[\cos \theta \] is \[\sin \theta \]. Also, remember \[\cos n\pi = {\left( { - 1} \right)^n}\].Also remember that alternating current can be defined as a current that changes its magnitude and polarity at regular intervals of time. It can also be defined as an electrical current which repeatedly changes or reverses its direction opposite to that of Direct Current or DC which always flows in a single direction.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE