
We are given that \[\alpha ,\beta \,\& \gamma \] are the zeroes of cubic polynomial \[P(x) = a{x^3} + b{x^3} + cx + d,(a \ne 0)\] then product of their zeroes \[\left[ {\alpha .\beta .\gamma } \right] = .....\]
Answer
579.3k+ views
Hint: To solve this type of problem first we will write general equation of cubic polynomial which is \[a{x^3} + b{x^2} + cx + d = 0\] and then we will make coefficient of \[x^3\] as 1 using division operation. Then we will write a cubic polynomial equation using zeros in the form of factors and then simplify and compare both equations to get the desired result.
Complete step-by- step solution:
Complete step-by- step solution:
General cubic polynomial can be written as -
\[p(x) = a{x^3} + b{x^2} + cx + d(a \ne 0)\]
Now cubic equation can be written as-
\[ \Rightarrow a{x^3} + b{x^2} + cx + d = 0\]
\[ \Rightarrow {x^3} + \dfrac{b}{a}{x^2} + \dfrac{c}{a}x + \dfrac{d}{a} = 0....(3)\]
Now,
If \[\alpha ,\beta ,\gamma \] are zeros then
\[(x - \alpha )(x - \beta )(x - \gamma ) = 0\]
On multiplying first two, we get:
\[({x^2} - (\alpha + \beta )x + \alpha \beta )(x - \gamma ) = 0\]
On multiplying the result with \[(x - \gamma )\], we get:
\[{x^3} - (\alpha + \beta ){x^2} + \alpha \beta x - \gamma {x^2} + \gamma (\alpha + \beta )x - \alpha \beta \gamma = 0\]
On simplifying, we get:
\[{x^3} - (\alpha + \beta + \gamma ){x^2} + (\alpha \beta + \beta \gamma + \gamma \alpha ) x - \alpha \beta \gamma = 0..........(4)\]
Now compare of equation (3) and (4), product of roots \[\alpha \beta \gamma = - \dfrac{d}{a}\]
Note: In quadratic equation like this,
\[a{x^2} + bx + c = 0(a \ne 0)\]
On dividing the equation throughout by ‘a’, we have:
\[ \Rightarrow {x^2} + \dfrac{b}{a} \times x + \dfrac{c}{a} = 0.......(1)\]
Now if \[\alpha \] and \[\beta \] zeroes of the quadratic equation, then:
\[(x - \alpha )(x - \beta ) = 0\]
\[{x^2} - \alpha x - \beta x + \alpha b = 0\]
\[{x^2} - (\alpha + \beta )x + \alpha b = 0....(2)\]
From equation 1 & 2, we have:
Sum of zeroes \[ \Rightarrow \alpha + \beta = - \dfrac{b}{a}\]
Product of zeroes \[ \Rightarrow \alpha \beta = \dfrac{c}{a}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

