Answer
Verified
419.1k+ views
Hint: The magnetic field which exists inside the cylindrical region is varying with time. So electric fields will be induced in the cylindrical region. The direction of the electric force on the electron will be opposite to the electric field.
Formula used: The formula used to solve this question is given by
$ \vec F = q\vec E $ , here $ \vec F $ is the force on a charge $ q $ due to an electric field $ \vec E $ .
Complete step-by-step solution
We know that the time varying magnetic field produces electric fields, which exist in loops. The direction of the electric fields, whether clockwise or anticlockwise, will be decided by Lenz's law. Since the magnetic field in the cylindrical region is increasing with time into the plane of the paper, the magnetic flux will also increase into the pane of the paper. So the direction of the induced electric fields will be such that the magnetic flux generated inside the cylindrical region is outside the plane of the paper.
From the right hand thumb rule, we get the direction of the loops of the electric field as anticlockwise. So the induced electric fields can be shown as in the following figure.
We know that the direction of the electric field at a point inside a region of the electric field lines is along the tangent to the electric field line at that point. So the direction of the electric field is as shown below.
We know that the force on a charged particle by the electric field is given by
$ \vec F = q\vec E $
Substituting $ q = - e $ for the electron at P, we get
$ \vec F = - e\vec E $
The above expression shows that the force on the electron must be opposite to the direction of the electric field at P. From the above figure, the direction of the electric field is towards the left. Thus, the direction of force on the electron is towards the right.
Hence, the correct answer is option A.
Note
Do not use the expression for the magnetic force on a charged particle due to a magnetic field for getting the direction of the force. Although the magnetic field exists in the cylindrical region, since the electron is at rest, no magnetic force will be experienced by it.
Formula used: The formula used to solve this question is given by
$ \vec F = q\vec E $ , here $ \vec F $ is the force on a charge $ q $ due to an electric field $ \vec E $ .
Complete step-by-step solution
We know that the time varying magnetic field produces electric fields, which exist in loops. The direction of the electric fields, whether clockwise or anticlockwise, will be decided by Lenz's law. Since the magnetic field in the cylindrical region is increasing with time into the plane of the paper, the magnetic flux will also increase into the pane of the paper. So the direction of the induced electric fields will be such that the magnetic flux generated inside the cylindrical region is outside the plane of the paper.
From the right hand thumb rule, we get the direction of the loops of the electric field as anticlockwise. So the induced electric fields can be shown as in the following figure.
We know that the direction of the electric field at a point inside a region of the electric field lines is along the tangent to the electric field line at that point. So the direction of the electric field is as shown below.
We know that the force on a charged particle by the electric field is given by
$ \vec F = q\vec E $
Substituting $ q = - e $ for the electron at P, we get
$ \vec F = - e\vec E $
The above expression shows that the force on the electron must be opposite to the direction of the electric field at P. From the above figure, the direction of the electric field is towards the left. Thus, the direction of force on the electron is towards the right.
Hence, the correct answer is option A.
Note
Do not use the expression for the magnetic force on a charged particle due to a magnetic field for getting the direction of the force. Although the magnetic field exists in the cylindrical region, since the electron is at rest, no magnetic force will be experienced by it.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE