Answer
Verified
418.5k+ views
Hint: As the lowest frequency of a periodic waveform, the natural frequency, or fundamental frequency, often referred to simply as the fundamental, is defined. The fundamental thing in music is the musical pitch of a note that is perceived as the smallest partial present. Calculate the fundamental frequency of the tube and put it in the formula of the fundamental frequency.
Formula used:
$v_{c}=\dfrac{v}{4 l}$
Complete solution:
The tension and the mass per unit length of the string determine the velocity of a travelling wave in a stretched string. For a cm-length string and mass/length = gm/m. The fundamental frequency would be Hz for such a string.
The fundamental frequency for a tube closed at one end is
$v_{c}=\dfrac{v}{4 l}$
where variables have their usual meanings
Now, for a tube locked at one end, the basic frequency is
$v_{0}=\dfrac{v}{2 l}$
where variables have their usual meanings
$v_{\mathrm{o}}=\dfrac{1}{2} 512 \times 4$
$\therefore {{v}_{\text{o}}}=1024~\text{Hz}$
If the tube is open at both ends, the fundamental frequency that can be excited is $1024~\text{Hz}$
Hence, the correct option is (D).
Note:
In any complex waveform, the fundamental frequency provides the sound with its strongest audible pitch reference - it is the predominant frequency. The simplest of all waveforms is a sine wave and contains only one basic frequency and no harmonics, overtones or partials. The following properties are described: When the string length is changed, it vibrates at a different frequency. Shorter strings have greater frequency and higher pitch as a result.
Formula used:
$v_{c}=\dfrac{v}{4 l}$
Complete solution:
The tension and the mass per unit length of the string determine the velocity of a travelling wave in a stretched string. For a cm-length string and mass/length = gm/m. The fundamental frequency would be Hz for such a string.
The fundamental frequency for a tube closed at one end is
$v_{c}=\dfrac{v}{4 l}$
where variables have their usual meanings
Now, for a tube locked at one end, the basic frequency is
$v_{0}=\dfrac{v}{2 l}$
where variables have their usual meanings
$v_{\mathrm{o}}=\dfrac{1}{2} 512 \times 4$
$\therefore {{v}_{\text{o}}}=1024~\text{Hz}$
If the tube is open at both ends, the fundamental frequency that can be excited is $1024~\text{Hz}$
Hence, the correct option is (D).
Note:
In any complex waveform, the fundamental frequency provides the sound with its strongest audible pitch reference - it is the predominant frequency. The simplest of all waveforms is a sine wave and contains only one basic frequency and no harmonics, overtones or partials. The following properties are described: When the string length is changed, it vibrates at a different frequency. Shorter strings have greater frequency and higher pitch as a result.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE