
A tower stands vertically on the ground. From a point on the ground, 20 m away from the foot of the tower, the angle of elevation of the top of the tower is ${60^0}$. What is the height of the tower?
Answer
607.5k+ views
Hint- Here, we will be using the tangent of the angle of elevation in order to find the height of the tower.
Let AB is the tower of height $h$ meters and C be any point on the ground which is 20 m away from the foot of the tower and the angle of elevation of the top of the tower from point C is ${60^0}$.
Clearly, $\vartriangle {\text{ABC}}$ is a right angled triangle at vertex B.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
From the figure we can say that according to angle ${60^0}$, AB is the perpendicular, BC is the base and
AC is the hypotenuse of the right angled triangle ABC.
So, $\tan {60^0} = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{h}{{20}} \Rightarrow h = 20\left( {\tan {{60}^0}} \right){\text{ }} \to {\text{(1)}}$
Also we know that $\tan {60^0} = \sqrt 3 $
Equation (1) becomes $ \Rightarrow h = 20\left( {\tan {{60}^0}} \right) = 20\sqrt 3 {\text{ m}}$
Hence, the height of the tower AB is $20\sqrt 3 $ meters.
Note- In these type of problems we need to know that for any right angled triangle, the side opposite to
the right angle is the hypotenuse, the side opposite to the acute angle considered (in the above problem
the acute angle considered is ${60^0}$) is the perpendicular and the remaining side is the base.
Let AB is the tower of height $h$ meters and C be any point on the ground which is 20 m away from the foot of the tower and the angle of elevation of the top of the tower from point C is ${60^0}$.
Clearly, $\vartriangle {\text{ABC}}$ is a right angled triangle at vertex B.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
From the figure we can say that according to angle ${60^0}$, AB is the perpendicular, BC is the base and
AC is the hypotenuse of the right angled triangle ABC.
So, $\tan {60^0} = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{h}{{20}} \Rightarrow h = 20\left( {\tan {{60}^0}} \right){\text{ }} \to {\text{(1)}}$
Also we know that $\tan {60^0} = \sqrt 3 $
Equation (1) becomes $ \Rightarrow h = 20\left( {\tan {{60}^0}} \right) = 20\sqrt 3 {\text{ m}}$
Hence, the height of the tower AB is $20\sqrt 3 $ meters.
Note- In these type of problems we need to know that for any right angled triangle, the side opposite to
the right angle is the hypotenuse, the side opposite to the acute angle considered (in the above problem
the acute angle considered is ${60^0}$) is the perpendicular and the remaining side is the base.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

