Answer
Verified
437.7k+ views
Hint: The formula of electric field due to uniform changed disk is given by E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ \dfrac{1-h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $
We can find electric field at distance ‘h’ by subtracting the electric field due to disk of radius a from disk of radius ‘2a’.On applying the given condition and putting $ E=ch, $ we can calculate h.
Complete step-by-step
Electric field due to uniform changed disk with surface charge density $ \sigma $ is given by:
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1=\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $ where h is the Distance along the axis of disk from the center.
Electric field at distance can be calculated by subtracting the electric field due to disk of radius from disk of radius
So we get
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{\left( 2a \right)}^{2}}}} \right]\text{ }-\dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{a}^{2}}}} \right) $
as h << a, $ \sqrt{{{h}^{2}}+{{\left( 2a \right)}^{2}}}=2a\text{ }and\text{ }\sqrt{{{h}^{2}}+{{a}^{2}}}=a $
Hence, the question becomes
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{2a} \right)\text{ }-\dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{a} \right) $
= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\dfrac{\sigma h}{4\varepsilon \circ }\text{ }-\text{ }\dfrac{\sigma }{2\varepsilon \circ }\text{ +}\dfrac{\sigma h}{2\varepsilon \circ a} $
= $ \dfrac{\sigma h}{4\varepsilon \circ a} $
Now, as given in the question
E= ch
So,
Ch= $ \dfrac{\sigma h}{4\varepsilon \circ a} $
C= $ \dfrac{\sigma }{4\varepsilon \circ } $ .
Note
The electric field of a disc of charge can be found by superposing the point charge elements.
This can be facilitated by summing the field of charged rings. The integral over the charged disc takes the form
E=k $ \sigma 2\pi h\int{\dfrac{{{r}^{1}}d{{r}^{1}}}{\circ {{\left( {{h}^{2}}+{{r}^{12}} \right)}^{3/2}}}}-a $
Here h=perpendicular distance from center of disk to the point an axio.
R=radius of inner concentric axio.
R=radius of outer concentric axio.
On integrating question a, we get
E=k $ \sigma 2\pi \left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $
As K= $ \dfrac{1}{4\varepsilon \circ }\text{ }=coulomb's\text{ constant} $
Hence
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $ .
We can find electric field at distance ‘h’ by subtracting the electric field due to disk of radius a from disk of radius ‘2a’.On applying the given condition and putting $ E=ch, $ we can calculate h.
Complete step-by-step
Electric field due to uniform changed disk with surface charge density $ \sigma $ is given by:
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1=\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $ where h is the Distance along the axis of disk from the center.
Electric field at distance can be calculated by subtracting the electric field due to disk of radius from disk of radius
So we get
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{\left( 2a \right)}^{2}}}} \right]\text{ }-\dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{a}^{2}}}} \right) $
as h << a, $ \sqrt{{{h}^{2}}+{{\left( 2a \right)}^{2}}}=2a\text{ }and\text{ }\sqrt{{{h}^{2}}+{{a}^{2}}}=a $
Hence, the question becomes
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{2a} \right)\text{ }-\dfrac{\sigma }{2\varepsilon \circ }\text{ }\left( 1-\dfrac{h}{a} \right) $
= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\dfrac{\sigma h}{4\varepsilon \circ }\text{ }-\text{ }\dfrac{\sigma }{2\varepsilon \circ }\text{ +}\dfrac{\sigma h}{2\varepsilon \circ a} $
= $ \dfrac{\sigma h}{4\varepsilon \circ a} $
Now, as given in the question
E= ch
So,
Ch= $ \dfrac{\sigma h}{4\varepsilon \circ a} $
C= $ \dfrac{\sigma }{4\varepsilon \circ } $ .
Note
The electric field of a disc of charge can be found by superposing the point charge elements.
This can be facilitated by summing the field of charged rings. The integral over the charged disc takes the form
E=k $ \sigma 2\pi h\int{\dfrac{{{r}^{1}}d{{r}^{1}}}{\circ {{\left( {{h}^{2}}+{{r}^{12}} \right)}^{3/2}}}}-a $
Here h=perpendicular distance from center of disk to the point an axio.
R=radius of inner concentric axio.
R=radius of outer concentric axio.
On integrating question a, we get
E=k $ \sigma 2\pi \left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $
As K= $ \dfrac{1}{4\varepsilon \circ }\text{ }=coulomb's\text{ constant} $
Hence
E= $ \dfrac{\sigma }{2\varepsilon \circ }\text{ }\left[ 1-\dfrac{h}{\sqrt{{{h}^{2}}+{{r}^{2}}}} \right] $ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE