
A swimmer S is in the sea at a distance ’d’ km from the closest point A on a straight shore. The house of the swimmer is one the shore at a distance \[L{\text{ km}}\] from A. He can swim at a speed of \[u{\text{ km/hr}}\] and walk at a speed of \[v{\text{ km/hr}}\left( {v > u} \right)\]. At which point on the shore should he land so that he reaches his house in the shortest possible time?
A. \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\]
B. \[\dfrac{{vd}}{{\sqrt {{v^2} - {u^2}} }}\]
C. \[\dfrac{{vd}}{{\sqrt {{v^2} + {u^2}} }}\]
D. \[\dfrac{{ud}}{{\sqrt {{v^2} + {u^2}} }}\]
Answer
485.4k+ views
Hint: First of all, draw the figure for this problem with the help of the given data to get a clear idea of what we have to find. Then use the distance-time formula and second derivative test to find the shortest time period. So, use this concept to reach the solution to the given problem.
Complete step-by-step solution:
Given that the swimmer is at a point S which is at a distance ‘d’ km from point A.
Let the house of the swimmer be at point B.
Since the distance between point A and his house i.e., B is \[L{\text{ km}}\]. So, \[AB = L{\text{ km}}\].
Let the swimmer land at point C on the shore and let \[AC = x{\text{ km}}\]as shown in the below figure:
Therefore, from the figure \[SC = \sqrt {{x^2} + {d^2}} \] and \[CB = \left( {L - x} \right)\]
We know that \[{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}\]
Given that speed of the swimmer to swim from S to C \[ = u{\text{ km/hr}}\]
So, time taken to travel from S to C \[ = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u}\]
Also given that speed of the swimmer to walk from C to B \[ = v{\text{ km/hr}}\]
So, time taken to travel from S to B \[ = \dfrac{{L - x}}{v}\]
Let \[T\] be the time taken to travel from S to B
time taken to travel from S to B = time taken to travel from S to C + time taken to travel from C to B
\[ \Rightarrow T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{{L - x}}{v}\]
Let \[f\left( x \right) = T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{L}{v} - \dfrac{x}{v}\]
Differentiating \[f\left( x \right)\] with respective to \[x\], we have
\[
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {{x^2} + {d^2}} }}{u}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{d}{{dx}}\left( {\dfrac{x}{v}} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {d^2}} } \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{1}{v}\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} \\
\]
We know that for the least and greatest value of any function is obtained by equating its first derivate to zero.
For maximum or minimum, put \[f'\left( x \right) = 0\]
\[
\Rightarrow \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} = 0 \\
\Rightarrow \dfrac{x}{{u\sqrt {{x^2} + {d^2}} }} = \dfrac{1}{v} \\
\Rightarrow \dfrac{{\sqrt {{x^2} + {d^2}} }}{x} = \dfrac{v}{u} \\
\]
Squaring on both sides, we get
\[
\Rightarrow \dfrac{{{x^2} + {d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{x^2}}}{{{x^2}}} + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow 1 + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} - 1 \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2} - {u^2}}}{{{u^2}}} \\
\Rightarrow {x^2} = \dfrac{{{u^2}{d^2}}}{{{v^2} - {u^2}}} \\
\]
Rooting on both sides, we have
\[
\Rightarrow x = \pm \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\therefore x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}{\text{ or }}\dfrac{{ - ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\]
We know that, the least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Now, consider the second derivative of \[f\left( x \right)\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right)\]
\[
\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right) \\
\therefore f''\left( x \right) = \dfrac{{{d^2}}}{{u\left( {{x^2} + {d^2}} \right)\sqrt {{x^2} + {d^2}} }} \\
\]
For \[x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\] we have \[f''\left( {\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}} \right) > 0\].
So, the shortest possible time is \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\].
Thus, the correct option is A. \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\]
Note: For the least and greatest value of any function is obtained by equating its first derivate to zero. The least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Complete step-by-step solution:
Given that the swimmer is at a point S which is at a distance ‘d’ km from point A.
Let the house of the swimmer be at point B.
Since the distance between point A and his house i.e., B is \[L{\text{ km}}\]. So, \[AB = L{\text{ km}}\].
Let the swimmer land at point C on the shore and let \[AC = x{\text{ km}}\]as shown in the below figure:

Therefore, from the figure \[SC = \sqrt {{x^2} + {d^2}} \] and \[CB = \left( {L - x} \right)\]
We know that \[{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}\]
Given that speed of the swimmer to swim from S to C \[ = u{\text{ km/hr}}\]
So, time taken to travel from S to C \[ = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u}\]
Also given that speed of the swimmer to walk from C to B \[ = v{\text{ km/hr}}\]
So, time taken to travel from S to B \[ = \dfrac{{L - x}}{v}\]
Let \[T\] be the time taken to travel from S to B
time taken to travel from S to B = time taken to travel from S to C + time taken to travel from C to B
\[ \Rightarrow T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{{L - x}}{v}\]
Let \[f\left( x \right) = T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{L}{v} - \dfrac{x}{v}\]
Differentiating \[f\left( x \right)\] with respective to \[x\], we have
\[
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {{x^2} + {d^2}} }}{u}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{d}{{dx}}\left( {\dfrac{x}{v}} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {d^2}} } \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{1}{v}\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} \\
\]
We know that for the least and greatest value of any function is obtained by equating its first derivate to zero.
For maximum or minimum, put \[f'\left( x \right) = 0\]
\[
\Rightarrow \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} = 0 \\
\Rightarrow \dfrac{x}{{u\sqrt {{x^2} + {d^2}} }} = \dfrac{1}{v} \\
\Rightarrow \dfrac{{\sqrt {{x^2} + {d^2}} }}{x} = \dfrac{v}{u} \\
\]
Squaring on both sides, we get
\[
\Rightarrow \dfrac{{{x^2} + {d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{x^2}}}{{{x^2}}} + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow 1 + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} - 1 \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2} - {u^2}}}{{{u^2}}} \\
\Rightarrow {x^2} = \dfrac{{{u^2}{d^2}}}{{{v^2} - {u^2}}} \\
\]
Rooting on both sides, we have
\[
\Rightarrow x = \pm \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\therefore x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}{\text{ or }}\dfrac{{ - ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\]
We know that, the least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Now, consider the second derivative of \[f\left( x \right)\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right)\]
\[
\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right) \\
\therefore f''\left( x \right) = \dfrac{{{d^2}}}{{u\left( {{x^2} + {d^2}} \right)\sqrt {{x^2} + {d^2}} }} \\
\]
For \[x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\] we have \[f''\left( {\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}} \right) > 0\].
So, the shortest possible time is \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\].
Thus, the correct option is A. \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\]
Note: For the least and greatest value of any function is obtained by equating its first derivate to zero. The least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
