
A string oscillating at a fundamental frequency under a tension of $225\;{\text{N}}$ produces $6\;{\text{beats/sec}}$ with a sonometer. If the tension is $256\;{\text{N}}$, then again oscillating at fundamental note it produces $6$ beats per second with the same sonometer. The frequency of the sonometer is:
A) $256\;{\text{Hz}}$
B) $225\;{\text{Hz}}$
C) $280\;{\text{Hz}}$
D) $186\;{\text{Hz}}$
Answer
232.8k+ views
Hint: The difference in frequencies of two waves can be termed as beats per second. The frequency increases when the tension increases. The fundamental frequency of the sonometer can be found by comparing the two fundamental frequencies of different tensions.
Complete step by step answer:
The expression for the fundamental frequency of the for a string is given as,
$\eta = \dfrac{1}{{2l}}\sqrt {\dfrac{T}{\mu }} $
Where, $T$ is tension, $\mu $ is the linear mass density and $l$ is the length of the string.
Let ${\eta _1}$ is the fundamental frequency of the string under a tension of $225\;{\text{N}}$.
Therefore,
$
{\eta _1} = \dfrac{1}{{2l}}\sqrt {\dfrac{{225}}{\mu }} \\
= \dfrac{{15}}{{2l}}\sqrt {\dfrac{1}{\mu }} \\
$
Let ${\eta _1}^\prime $ is the fundamental frequency of the string under a tension of $256\;{\text{N}}$.
Therefore,
$
{\eta _1}^\prime = \dfrac{1}{{2l}}\sqrt {\dfrac{{256}}{\mu }} \\
= \dfrac{{16}}{{2l}}\sqrt {\dfrac{1}{\mu }} \\
$
And let the fundamental frequency of the sonometer is ${\eta _2}$ .
Also let’s take $k = \dfrac{1}{{2l}}\sqrt {\dfrac{1}{\mu }} $
Therefore,${\eta _1} = 15k$ and ${\eta _1}^\prime = 16k$.
The difference in fundamental frequencies can be termed as beats per second. It is given that string oscillating at a fundamental frequency under a tension of $225\;{\text{N}}$ produces $6\;{\text{beats/sec}}$ with a sonometer.
Therefore, ${\eta _2} - {\eta _1} = 6........\left( 1 \right)$
Also it is given that string oscillating at a fundamental frequency under a tension of $256\;{\text{N}}$ produces $6\;{\text{beats/sec}}$ with a sonometer.
Therefore, ${\eta _1}^\prime - {\eta _2} = 6........\left( 2 \right)$
Solving equation $\left( 1 \right)$ and equation $\left( 2 \right)$, we get
${\eta _1}^\prime - {\eta _1} = 12$
Substituting for the above expression,
$
16k - 15k = 12 \\
k = 12 \\
$
From the equation $\left( 1 \right)$ and above results,
$
{\eta _2} - {\eta _1} = 6 \\
{\eta _2} = {\eta _1} + 6 \\
{\eta _2} = 15k + 6 \\
$
Substitute the values, we get
$
{\eta _2} = 15 \times 12 + 6 \\
= 186\;{\text{Hz}} \\
$
Thus the fundamental frequency of the sonometer is $186\;{\text{Hz}}$.
The answer is option D.
Note: We want to note that hence the difference in the fundamental frequencies is equal to beats per second, the unit hertz will be equivalent to beats per second. Beats are produced by the overlapping of two waves.
Complete step by step answer:
The expression for the fundamental frequency of the for a string is given as,
$\eta = \dfrac{1}{{2l}}\sqrt {\dfrac{T}{\mu }} $
Where, $T$ is tension, $\mu $ is the linear mass density and $l$ is the length of the string.
Let ${\eta _1}$ is the fundamental frequency of the string under a tension of $225\;{\text{N}}$.
Therefore,
$
{\eta _1} = \dfrac{1}{{2l}}\sqrt {\dfrac{{225}}{\mu }} \\
= \dfrac{{15}}{{2l}}\sqrt {\dfrac{1}{\mu }} \\
$
Let ${\eta _1}^\prime $ is the fundamental frequency of the string under a tension of $256\;{\text{N}}$.
Therefore,
$
{\eta _1}^\prime = \dfrac{1}{{2l}}\sqrt {\dfrac{{256}}{\mu }} \\
= \dfrac{{16}}{{2l}}\sqrt {\dfrac{1}{\mu }} \\
$
And let the fundamental frequency of the sonometer is ${\eta _2}$ .
Also let’s take $k = \dfrac{1}{{2l}}\sqrt {\dfrac{1}{\mu }} $
Therefore,${\eta _1} = 15k$ and ${\eta _1}^\prime = 16k$.
The difference in fundamental frequencies can be termed as beats per second. It is given that string oscillating at a fundamental frequency under a tension of $225\;{\text{N}}$ produces $6\;{\text{beats/sec}}$ with a sonometer.
Therefore, ${\eta _2} - {\eta _1} = 6........\left( 1 \right)$
Also it is given that string oscillating at a fundamental frequency under a tension of $256\;{\text{N}}$ produces $6\;{\text{beats/sec}}$ with a sonometer.
Therefore, ${\eta _1}^\prime - {\eta _2} = 6........\left( 2 \right)$
Solving equation $\left( 1 \right)$ and equation $\left( 2 \right)$, we get
${\eta _1}^\prime - {\eta _1} = 12$
Substituting for the above expression,
$
16k - 15k = 12 \\
k = 12 \\
$
From the equation $\left( 1 \right)$ and above results,
$
{\eta _2} - {\eta _1} = 6 \\
{\eta _2} = {\eta _1} + 6 \\
{\eta _2} = 15k + 6 \\
$
Substitute the values, we get
$
{\eta _2} = 15 \times 12 + 6 \\
= 186\;{\text{Hz}} \\
$
Thus the fundamental frequency of the sonometer is $186\;{\text{Hz}}$.
The answer is option D.
Note: We want to note that hence the difference in the fundamental frequencies is equal to beats per second, the unit hertz will be equivalent to beats per second. Beats are produced by the overlapping of two waves.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Mass vs Weight: Key Differences Explained for Students

Uniform Acceleration Explained: Formula, Examples & Graphs

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

