Answer
Verified
456.6k+ views
Hint:-The stress is the ratio of applied force and area on the surface. Strain is defined as the ratio of change in length to the applied length. Also the Young’s modulus is defined as the ratio of stress and strain.
Formula used: The formula of relationship between stress and strain is given by ${\text{Young's Modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}}$. The formula of strain is given by${\text{Strain}} = \dfrac{{\Delta l}}{l}$.
Complete step-by-step solution:It is given that a cylindrical tube made of aluminum material of cross sectional area ${A_t} = {10^{ - 4}}{m^2}$ and length $L = 50cm$also the cross section of the steel bolt is${A_b} = 5 \times {10^{ - 5}}{m^2}$. The increase in the temperature is$\Delta \theta = 10^\circ C$. The coefficient of thermal expansion of steel is${\alpha _b} = {10^{ - 5}}\dfrac{1}{{^\circ C}}$.
Let us calculate the actual increase in the length of the aluminum as there is an increase in the temperature of the aluminum by$\Delta \theta = 10^\circ C$.
The change in length of the aluminum is given by,
$ \Rightarrow \Delta L = \alpha {L_{al.}}\Delta T$
Replace the value of length of the aluminum with the thermal expansion of the aluminum and change in temperature of the aluminum.
$L = 0 \cdot 50m$, $\Delta T = 10^\circ C$, ${\alpha _t} = 2 \times {10^{ - 5}}\dfrac{1}{{^\circ C}}$.
$ \Rightarrow \Delta {L_{al.}} = \alpha {L_{al.}}\Delta T$
$ \Rightarrow \Delta {L_{al.}} = \left( {2 \times {{10}^{ - 5}}} \right) \cdot \left( {0 \cdot 5} \right) \cdot \left( {10} \right)$
$ \Rightarrow \Delta {L_{al.}} = {10^{ - 4}}m$
The change in length of the aluminum tube is$\Delta {L_{al.}} = {10^{ - 4}}m$.
As the change in the length of bolt is equal to the change in the length of aluminum.
The strain produced in aluminum tube is given by,
$strain = \dfrac{{\Delta {L_{{\text{aluminum}}}}}}{{{L_{{\text{aluminum}}}}}}$
Replace the value of the change in length and original length of aluminum.
$ \Rightarrow strain = \dfrac{{\Delta {L_{{\text{aluminum}}}}}}{{{L_{{\text{aluminum}}}}}}$
$strain = \dfrac{{{{10}^{ - 4}}}}{{0 \cdot 5}}$
$strain = 5 \times {10^{ - 5}}$
As the strain will be the same in bolt as well as aluminum. Now we can calculate the stress in the bolt.
Since,
$stress = {Y_{steel}} \cdot \left( {strain} \right)$
Replace the value of strain and young’s modulus of steel we get.
$ \Rightarrow stress = {Y_{steel}} \cdot \left( {strain} \right)$
$ \Rightarrow stress = \left( {2 \times {{10}^{11}}} \right) \cdot \left( {5 \times {{10}^{ - 5}}} \right)$
$ \Rightarrow stress = {10^7}\dfrac{N}{{{m^2}}}$
The stress on the bolt is equal to$stress = {10^7}\dfrac{N}{{{m^2}}}$. The correct option is option B.
Note:-
The aluminum tube material would have expanded more but due to the presence of the steel bolt the aluminum tube cannot expand so the steel bolt applies certain force onto the aluminum material to stop its expansion.
Formula used: The formula of relationship between stress and strain is given by ${\text{Young's Modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}}$. The formula of strain is given by${\text{Strain}} = \dfrac{{\Delta l}}{l}$.
Complete step-by-step solution:It is given that a cylindrical tube made of aluminum material of cross sectional area ${A_t} = {10^{ - 4}}{m^2}$ and length $L = 50cm$also the cross section of the steel bolt is${A_b} = 5 \times {10^{ - 5}}{m^2}$. The increase in the temperature is$\Delta \theta = 10^\circ C$. The coefficient of thermal expansion of steel is${\alpha _b} = {10^{ - 5}}\dfrac{1}{{^\circ C}}$.
Let us calculate the actual increase in the length of the aluminum as there is an increase in the temperature of the aluminum by$\Delta \theta = 10^\circ C$.
The change in length of the aluminum is given by,
$ \Rightarrow \Delta L = \alpha {L_{al.}}\Delta T$
Replace the value of length of the aluminum with the thermal expansion of the aluminum and change in temperature of the aluminum.
$L = 0 \cdot 50m$, $\Delta T = 10^\circ C$, ${\alpha _t} = 2 \times {10^{ - 5}}\dfrac{1}{{^\circ C}}$.
$ \Rightarrow \Delta {L_{al.}} = \alpha {L_{al.}}\Delta T$
$ \Rightarrow \Delta {L_{al.}} = \left( {2 \times {{10}^{ - 5}}} \right) \cdot \left( {0 \cdot 5} \right) \cdot \left( {10} \right)$
$ \Rightarrow \Delta {L_{al.}} = {10^{ - 4}}m$
The change in length of the aluminum tube is$\Delta {L_{al.}} = {10^{ - 4}}m$.
As the change in the length of bolt is equal to the change in the length of aluminum.
The strain produced in aluminum tube is given by,
$strain = \dfrac{{\Delta {L_{{\text{aluminum}}}}}}{{{L_{{\text{aluminum}}}}}}$
Replace the value of the change in length and original length of aluminum.
$ \Rightarrow strain = \dfrac{{\Delta {L_{{\text{aluminum}}}}}}{{{L_{{\text{aluminum}}}}}}$
$strain = \dfrac{{{{10}^{ - 4}}}}{{0 \cdot 5}}$
$strain = 5 \times {10^{ - 5}}$
As the strain will be the same in bolt as well as aluminum. Now we can calculate the stress in the bolt.
Since,
$stress = {Y_{steel}} \cdot \left( {strain} \right)$
Replace the value of strain and young’s modulus of steel we get.
$ \Rightarrow stress = {Y_{steel}} \cdot \left( {strain} \right)$
$ \Rightarrow stress = \left( {2 \times {{10}^{11}}} \right) \cdot \left( {5 \times {{10}^{ - 5}}} \right)$
$ \Rightarrow stress = {10^7}\dfrac{N}{{{m^2}}}$
The stress on the bolt is equal to$stress = {10^7}\dfrac{N}{{{m^2}}}$. The correct option is option B.
Note:-
The aluminum tube material would have expanded more but due to the presence of the steel bolt the aluminum tube cannot expand so the steel bolt applies certain force onto the aluminum material to stop its expansion.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it