Answer
Verified
455.4k+ views
Hint: Use the expression for the linear thermal expansion of a solid material. This equation gives the relation between the original length, change in length, coefficient of linear thermal expansion and change in temperature of the solid material.
Formula used:
The expression for the linear thermal expansion of a solid material is
\[\Delta L = \alpha {L_0}\Delta T\] …… (1)
Here, \[\Delta L\] is the change in the length of the solid material, \[\alpha \] is the linear thermal expansion coefficient, \[L\] is the original length of the material and \[\Delta T\] is the change in the temperature.
Complete step by step answer:
The length of the steel beam is \[5\,{\text{m}}\] at a temperature of \[20^\circ {\text{C}}\]. The temperature increases to \[40^\circ {\text{C}}\] on a hot day.
Calculate the change in the temperature \[\Delta T\] of the steel beam.
\[\Delta T = {T_f} - {T_i}\]
Here, \[{T_f}\] is the final increased temperature of the steel beam and \[{T_i}\] is the initial temperature of the steel beam.
Substitute for \[{T_f}\] and \[20^\circ {\text{C}}\] for \[{T_i}\] in the above equation.
\[\Delta T = 40^\circ {\text{C}} - 20^\circ {\text{C}}\]
\[ \Rightarrow \Delta T = 20^\circ {\text{C}}\]
Hence, the change in the temperature of the steel beam is \[20^\circ {\text{C}}\].
Calculate the change in the length of the steel beam at the increased temperature \[40^\circ {\text{C}}\].
Substitute \[1.2 \times {10^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}\] for \[\alpha \], \[5\,{\text{m}}\] for \[L\] and \[20^\circ {\text{C}}\] for \[\Delta T\] in equation (1).
\[\Delta L = \left( {1.2 \times {{10}^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}} \right)\left( {5\,{\text{m}}} \right)\left( {20^\circ {\text{C}}} \right)\]
\[ \Rightarrow \Delta L = \left( {1.2 \times {{10}^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}} \right)\left( {5\,{\text{m}}} \right)\left( {20^\circ {\text{C}}} \right)\]
\[ \Rightarrow \Delta L = 1.2 \times {10^{ - 3}}\,{\text{m}}\]
\[ \Rightarrow \Delta L = 1.2\,{\text{mm}}\]
Hence, the change in the length of the steel beam is \[1.2\,{\text{mm}}\].
Note:
Since the unit of the coefficient of the linear thermal expansion of the steel beam is given in degree Celsius, the change in the temperature of the steel beam is taken in degree Celsius. Otherwise, one should convert the unit of the convert in temperature of the given material in Kelvin.
Formula used:
The expression for the linear thermal expansion of a solid material is
\[\Delta L = \alpha {L_0}\Delta T\] …… (1)
Here, \[\Delta L\] is the change in the length of the solid material, \[\alpha \] is the linear thermal expansion coefficient, \[L\] is the original length of the material and \[\Delta T\] is the change in the temperature.
Complete step by step answer:
The length of the steel beam is \[5\,{\text{m}}\] at a temperature of \[20^\circ {\text{C}}\]. The temperature increases to \[40^\circ {\text{C}}\] on a hot day.
Calculate the change in the temperature \[\Delta T\] of the steel beam.
\[\Delta T = {T_f} - {T_i}\]
Here, \[{T_f}\] is the final increased temperature of the steel beam and \[{T_i}\] is the initial temperature of the steel beam.
Substitute for \[{T_f}\] and \[20^\circ {\text{C}}\] for \[{T_i}\] in the above equation.
\[\Delta T = 40^\circ {\text{C}} - 20^\circ {\text{C}}\]
\[ \Rightarrow \Delta T = 20^\circ {\text{C}}\]
Hence, the change in the temperature of the steel beam is \[20^\circ {\text{C}}\].
Calculate the change in the length of the steel beam at the increased temperature \[40^\circ {\text{C}}\].
Substitute \[1.2 \times {10^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}\] for \[\alpha \], \[5\,{\text{m}}\] for \[L\] and \[20^\circ {\text{C}}\] for \[\Delta T\] in equation (1).
\[\Delta L = \left( {1.2 \times {{10}^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}} \right)\left( {5\,{\text{m}}} \right)\left( {20^\circ {\text{C}}} \right)\]
\[ \Rightarrow \Delta L = \left( {1.2 \times {{10}^{ - 5}}\,^\circ {{\text{C}}^{ - 1}}} \right)\left( {5\,{\text{m}}} \right)\left( {20^\circ {\text{C}}} \right)\]
\[ \Rightarrow \Delta L = 1.2 \times {10^{ - 3}}\,{\text{m}}\]
\[ \Rightarrow \Delta L = 1.2\,{\text{mm}}\]
Hence, the change in the length of the steel beam is \[1.2\,{\text{mm}}\].
Note:
Since the unit of the coefficient of the linear thermal expansion of the steel beam is given in degree Celsius, the change in the temperature of the steel beam is taken in degree Celsius. Otherwise, one should convert the unit of the convert in temperature of the given material in Kelvin.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE