
A series RLC circuit has a bandwidth of 300rad/sec at a resonance frequency of 3000rad/sec when excited by a voltage source of 100V. The inductance of the coil is 0.1H. The value of R and voltage across C are respectively
$\begin{align}
& \left( 1 \right)10\Omega and 100V \\
& \left( 2 \right)30\Omega and 100V \\
& \left( 3 \right)30\Omega and 1000V \\
& \left( 4 \right)300\Omega and 1000V \\
\end{align}$
Answer
558.9k+ views
Hint: Here the bandwidth is the ratio of the given resistance and the inductance in the circuit. Hence by rearranging the equation we get the equation of R. Then by substituting the values of the bandwidth and the inductance we will the resistance. The quality factor is the ratio of resonant frequency to the band width. The product of the quality factor and source voltage is equal to the voltage across capacitance which is also equal to the voltage across inductance.
Complete answer:
Given that V=100V
L=0.1H
Band width =300rad/sec
In series RLC circuit,
$Bandwidth=\dfrac{R}{L}=300$
$\Rightarrow $ $R=Bandwidth\times L$
$\Rightarrow R=300\times 0.1$
$\therefore R=30\Omega $
$Q=\dfrac{\operatorname{Re}sonantFrequency}{bandwidth}$
where, Q is the quality factor.
$\begin{align}
& \Rightarrow Q=\dfrac{3000}{300} \\
& \therefore Q=10 \\
\end{align}$
At resonance,
$\left| {{V}_{L}} \right|=\left| {{V}_{C}} \right|=Q{{V}_{S}}$
$\begin{align}
& \Rightarrow Q{{V}_{S}}=10\times 100 \\
& \therefore \left| {{V}_{L}} \right|=\left| {{V}_{C}} \right|=1000V \\
\end{align}$
Hence option (3) is correct.
Additional information:
Inductive reactance is the name given to a changing current flow. The impedance is usually measured in ohms, just like resistance. That is, the inductive reactance has the same unit of resistance. Capacitive reactance decreases with the increasing value of AC frequency, while inductive reactance increases with increasing AC frequency. When current passes through a coil, then it will become electromagnetic. The current that flows through the coil will have an opposition like resistance upon its inductance and frequency waveform. Where inductive reactance is the product of inductance and angular frequency. Similarly, capacitive reactance is the product of capacitance and angular frequency. By substituting these values and substituting we get the value of capacitance.
Note:
The quality factor is the ratio of resonant frequency to the band width. The product of the quality factor and source voltage is equal to the voltage across capacitance which is also equal to the voltage across inductance. Also the bandwidth is the ratio of the given resistance and the inductance in the circuit.
Complete answer:
Given that V=100V
L=0.1H
Band width =300rad/sec
In series RLC circuit,
$Bandwidth=\dfrac{R}{L}=300$
$\Rightarrow $ $R=Bandwidth\times L$
$\Rightarrow R=300\times 0.1$
$\therefore R=30\Omega $
$Q=\dfrac{\operatorname{Re}sonantFrequency}{bandwidth}$
where, Q is the quality factor.
$\begin{align}
& \Rightarrow Q=\dfrac{3000}{300} \\
& \therefore Q=10 \\
\end{align}$
At resonance,
$\left| {{V}_{L}} \right|=\left| {{V}_{C}} \right|=Q{{V}_{S}}$
$\begin{align}
& \Rightarrow Q{{V}_{S}}=10\times 100 \\
& \therefore \left| {{V}_{L}} \right|=\left| {{V}_{C}} \right|=1000V \\
\end{align}$
Hence option (3) is correct.
Additional information:
Inductive reactance is the name given to a changing current flow. The impedance is usually measured in ohms, just like resistance. That is, the inductive reactance has the same unit of resistance. Capacitive reactance decreases with the increasing value of AC frequency, while inductive reactance increases with increasing AC frequency. When current passes through a coil, then it will become electromagnetic. The current that flows through the coil will have an opposition like resistance upon its inductance and frequency waveform. Where inductive reactance is the product of inductance and angular frequency. Similarly, capacitive reactance is the product of capacitance and angular frequency. By substituting these values and substituting we get the value of capacitance.
Note:
The quality factor is the ratio of resonant frequency to the band width. The product of the quality factor and source voltage is equal to the voltage across capacitance which is also equal to the voltage across inductance. Also the bandwidth is the ratio of the given resistance and the inductance in the circuit.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

