
A ratio of the fifth term from the beginning to the $5^{th}$ term from the end in binomial expansion \[{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\]
Answer
487.8k+ views
Hint: We use the concept of binomial expansion and count the value of r when starting from beginning and when starting from end. Write the terms and find their ratio by dividing one term by another.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\]through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
* Ratio of any number ‘x’ to ‘y’ is given by \[x:y = \dfrac{x}{y}\]
Complete step-by-step solution:
We are given the term\[{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\] ……….… (1)
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}}\]
We use binomial expansion to expand the given term
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} = \sum\limits_{r = 0}^{10} {^{10}{C_r}{{\left( {{2^{1/3}}} \right)}^{10 - r}}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^r}} \]
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}{ = ^{10}}{C_0}{\left( {{2^{1/3}}} \right)^{10 - 0}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^0}{ + ^{10}}{C_1}{\left( {{2^{1/3}}} \right)^{10 - 1}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^1} + ......{ + ^{10}}{C_{10}}{\left( {{2^{1/3}}} \right)^{10 - 10}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\]
From this expansion we can write the fifth term from starting has \[r = 4\] and the fifth term from end has \[r = 6\].
We find the terms separately and then find the ratio.
Fifth term from starting:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 4\]
Let the fifth term from end be denoted by ‘x’
\[\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
\[ \Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow x = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]..................… (1)
Fifth term from ending:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 6\]
Let the fifth term from end be denoted by ‘y’
\[\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^{10 - 6}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
\[ \Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow y = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]............… (2)
Now we find the ratio of two terms by dividing equation (1) by (2)
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
We use the formula \[{a^6} = {a^{4 + 2}} = {a^4}.{a^2}\]to expand terms in numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {{2^{1/3}}} \right)}^2}{{\left({\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^2}}}{{{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Solve the denominator using \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}}}{{\dfrac{1}{{{2^2}{{(3)}^{2/3}}}}}}\]
Make fraction simpler
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}{2^2}{{(3)}^{2/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {2^{2/3}}{{(3)}^{2/3}}}}{1}\]
We can write \[{2^{2/3}} = {({2^2})^{1/3}} = {4^{1/3}}\]and\[{3^{2/3}} = {({3^2})^{1/3}} = {9^{1/3}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {4^{1/3}} \times {9^{1/3}}}}{1}\]
Since we know when power is same base can be multiplied
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{(4 \times 9)}^{1/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{36}^{1/3}}}}{1}\]
Ratio of \[x:y = 4 \times {36^{1/3}}:1\]
\[\therefore \]Ratio of fifth term from staring to the fifth term from end is \[4 \times {36^{1/3}}:1\]
Note: Students many times make the mistake of writing the fifth term from starting and ending as the same i.e. having \[r = 5\]. This is wrong as students start writing the values of r from 1, we always start writing the value of r from 0 to 10, so the fifth term from starting comes different from fifth term from end.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\]through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
* Ratio of any number ‘x’ to ‘y’ is given by \[x:y = \dfrac{x}{y}\]
Complete step-by-step solution:
We are given the term\[{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\] ……….… (1)
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}}\]
We use binomial expansion to expand the given term
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} = \sum\limits_{r = 0}^{10} {^{10}{C_r}{{\left( {{2^{1/3}}} \right)}^{10 - r}}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^r}} \]
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}{ = ^{10}}{C_0}{\left( {{2^{1/3}}} \right)^{10 - 0}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^0}{ + ^{10}}{C_1}{\left( {{2^{1/3}}} \right)^{10 - 1}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^1} + ......{ + ^{10}}{C_{10}}{\left( {{2^{1/3}}} \right)^{10 - 10}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\]
From this expansion we can write the fifth term from starting has \[r = 4\] and the fifth term from end has \[r = 6\].
We find the terms separately and then find the ratio.
Fifth term from starting:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 4\]
Let the fifth term from end be denoted by ‘x’
\[\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
\[ \Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow x = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]..................… (1)
Fifth term from ending:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 6\]
Let the fifth term from end be denoted by ‘y’
\[\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^{10 - 6}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
\[ \Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow y = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]............… (2)
Now we find the ratio of two terms by dividing equation (1) by (2)
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
We use the formula \[{a^6} = {a^{4 + 2}} = {a^4}.{a^2}\]to expand terms in numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {{2^{1/3}}} \right)}^2}{{\left({\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^2}}}{{{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Solve the denominator using \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}}}{{\dfrac{1}{{{2^2}{{(3)}^{2/3}}}}}}\]
Make fraction simpler
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}{2^2}{{(3)}^{2/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {2^{2/3}}{{(3)}^{2/3}}}}{1}\]
We can write \[{2^{2/3}} = {({2^2})^{1/3}} = {4^{1/3}}\]and\[{3^{2/3}} = {({3^2})^{1/3}} = {9^{1/3}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {4^{1/3}} \times {9^{1/3}}}}{1}\]
Since we know when power is same base can be multiplied
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{(4 \times 9)}^{1/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{36}^{1/3}}}}{1}\]
Ratio of \[x:y = 4 \times {36^{1/3}}:1\]
\[\therefore \]Ratio of fifth term from staring to the fifth term from end is \[4 \times {36^{1/3}}:1\]
Note: Students many times make the mistake of writing the fifth term from starting and ending as the same i.e. having \[r = 5\]. This is wrong as students start writing the values of r from 1, we always start writing the value of r from 0 to 10, so the fifth term from starting comes different from fifth term from end.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE
