Answer
Verified
444.6k+ views
Hint: We use the concept of binomial expansion and count the value of r when starting from beginning and when starting from end. Write the terms and find their ratio by dividing one term by another.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\]through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
* Ratio of any number ‘x’ to ‘y’ is given by \[x:y = \dfrac{x}{y}\]
Complete step-by-step solution:
We are given the term\[{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\] ……….… (1)
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}}\]
We use binomial expansion to expand the given term
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} = \sum\limits_{r = 0}^{10} {^{10}{C_r}{{\left( {{2^{1/3}}} \right)}^{10 - r}}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^r}} \]
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}{ = ^{10}}{C_0}{\left( {{2^{1/3}}} \right)^{10 - 0}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^0}{ + ^{10}}{C_1}{\left( {{2^{1/3}}} \right)^{10 - 1}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^1} + ......{ + ^{10}}{C_{10}}{\left( {{2^{1/3}}} \right)^{10 - 10}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\]
From this expansion we can write the fifth term from starting has \[r = 4\] and the fifth term from end has \[r = 6\].
We find the terms separately and then find the ratio.
Fifth term from starting:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 4\]
Let the fifth term from end be denoted by ‘x’
\[\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
\[ \Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow x = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]..................… (1)
Fifth term from ending:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 6\]
Let the fifth term from end be denoted by ‘y’
\[\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^{10 - 6}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
\[ \Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow y = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]............… (2)
Now we find the ratio of two terms by dividing equation (1) by (2)
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
We use the formula \[{a^6} = {a^{4 + 2}} = {a^4}.{a^2}\]to expand terms in numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {{2^{1/3}}} \right)}^2}{{\left({\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^2}}}{{{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Solve the denominator using \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}}}{{\dfrac{1}{{{2^2}{{(3)}^{2/3}}}}}}\]
Make fraction simpler
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}{2^2}{{(3)}^{2/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {2^{2/3}}{{(3)}^{2/3}}}}{1}\]
We can write \[{2^{2/3}} = {({2^2})^{1/3}} = {4^{1/3}}\]and\[{3^{2/3}} = {({3^2})^{1/3}} = {9^{1/3}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {4^{1/3}} \times {9^{1/3}}}}{1}\]
Since we know when power is same base can be multiplied
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{(4 \times 9)}^{1/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{36}^{1/3}}}}{1}\]
Ratio of \[x:y = 4 \times {36^{1/3}}:1\]
\[\therefore \]Ratio of fifth term from staring to the fifth term from end is \[4 \times {36^{1/3}}:1\]
Note: Students many times make the mistake of writing the fifth term from starting and ending as the same i.e. having \[r = 5\]. This is wrong as students start writing the values of r from 1, we always start writing the value of r from 0 to 10, so the fifth term from starting comes different from fifth term from end.
* A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\]through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}} \]
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
* Ratio of any number ‘x’ to ‘y’ is given by \[x:y = \dfrac{x}{y}\]
Complete step-by-step solution:
We are given the term\[{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\] ……….… (1)
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}}\]
We use binomial expansion to expand the given term
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} = \sum\limits_{r = 0}^{10} {^{10}{C_r}{{\left( {{2^{1/3}}} \right)}^{10 - r}}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^r}} \]
\[ \Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}{ = ^{10}}{C_0}{\left( {{2^{1/3}}} \right)^{10 - 0}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^0}{ + ^{10}}{C_1}{\left( {{2^{1/3}}} \right)^{10 - 1}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^1} + ......{ + ^{10}}{C_{10}}{\left( {{2^{1/3}}} \right)^{10 - 10}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}\]
From this expansion we can write the fifth term from starting has \[r = 4\] and the fifth term from end has \[r = 6\].
We find the terms separately and then find the ratio.
Fifth term from starting:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 4\]
Let the fifth term from end be denoted by ‘x’
\[\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
\[ \Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow x = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}\]..................… (1)
Fifth term from ending:
Here \[n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 6\]
Let the fifth term from end be denoted by ‘y’
\[\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^{10 - 6}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
\[ \Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]
Use combination formula\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\Rightarrow y = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}\]............… (2)
Now we find the ratio of two terms by dividing equation (1) by (2)
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}\]
We use the formula \[{a^6} = {a^{4 + 2}} = {a^4}.{a^2}\]to expand terms in numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {{2^{1/3}}} \right)}^2}{{\left({\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Cancel same terms from numerator and denominator
\[\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^2}}}{{{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}\]
Solve the denominator using \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}}}{{\dfrac{1}{{{2^2}{{(3)}^{2/3}}}}}}\]
Make fraction simpler
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}{2^2}{{(3)}^{2/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {2^{2/3}}{{(3)}^{2/3}}}}{1}\]
We can write \[{2^{2/3}} = {({2^2})^{1/3}} = {4^{1/3}}\]and\[{3^{2/3}} = {({3^2})^{1/3}} = {9^{1/3}}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {4^{1/3}} \times {9^{1/3}}}}{1}\]
Since we know when power is same base can be multiplied
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{(4 \times 9)}^{1/3}}}}{1}\]
\[ \Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{36}^{1/3}}}}{1}\]
Ratio of \[x:y = 4 \times {36^{1/3}}:1\]
\[\therefore \]Ratio of fifth term from staring to the fifth term from end is \[4 \times {36^{1/3}}:1\]
Note: Students many times make the mistake of writing the fifth term from starting and ending as the same i.e. having \[r = 5\]. This is wrong as students start writing the values of r from 1, we always start writing the value of r from 0 to 10, so the fifth term from starting comes different from fifth term from end.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE